scholarly journals Crowd Monitoring and Localization Using Deep Convolutional Neural Network: A Review

2020 ◽  
Vol 10 (14) ◽  
pp. 4781 ◽  
Author(s):  
Akbar Khan ◽  
Jawad Ali Shah ◽  
Kushsairy Kadir ◽  
Waleed Albattah ◽  
Faizullah Khan

Crowd management and monitoring is crucial for maintaining public safety and is an important research topic. Developing a robust crowd monitoring system (CMS) is a challenging task as it involves addressing many key issues such as density variation, irregular distribution of objects, occlusions, pose estimation, etc. Crowd gathering at various places like hospitals, parks, stadiums, airports, cultural and religious points are usually monitored by Close Circuit Television (CCTV) cameras. The drawbacks of CCTV cameras are: limited area coverage, installation problems, movability, high power consumption and constant monitoring by the operators. Therefore, many researchers have turned towards computer vision and machine learning that have overcome these issues by minimizing the need of human involvement. This review is aimed to categorize, analyze as well as provide the latest development and performance evolution in crowd monitoring using different machine learning techniques and methods that are published in journals and conferences over the past five years.

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1158
Author(s):  
Behrad Bezyan ◽  
Radu Zmeureanu

In most cases, the benchmarking models of energy use in houses are developed based on current and past data, and they continue to be used without any update. This paper proposes the method of retraining of benchmarking models by applying machine learning techniques when new measurements are made available. The method uses as a case study the measurements of heating energy demand from two semi-detached houses of Northern Canada. The results of the prediction of heating energy demand using static or augmented window techniques are compared with measurements. The daily energy signature is used as a benchmarking model due to its simplicity and performance. However, the proposed retraining method can be applied to any form of benchmarking model. The method should be applied in all possible situations, and be an integral part of intelligent building automation and control systems (BACS) for the ongoing commissioning for building energy-related applications.


2019 ◽  
Vol 119 (3) ◽  
pp. 676-696 ◽  
Author(s):  
Zhongyi Hu ◽  
Raymond Chiong ◽  
Ilung Pranata ◽  
Yukun Bao ◽  
Yuqing Lin

Purpose Malicious web domain identification is of significant importance to the security protection of internet users. With online credibility and performance data, the purpose of this paper to investigate the use of machine learning techniques for malicious web domain identification by considering the class imbalance issue (i.e. there are more benign web domains than malicious ones). Design/methodology/approach The authors propose an integrated resampling approach to handle class imbalance by combining the synthetic minority oversampling technique (SMOTE) and particle swarm optimisation (PSO), a population-based meta-heuristic algorithm. The authors use the SMOTE for oversampling and PSO for undersampling. Findings By applying eight well-known machine learning classifiers, the proposed integrated resampling approach is comprehensively examined using several imbalanced web domain data sets with different imbalance ratios. Compared to five other well-known resampling approaches, experimental results confirm that the proposed approach is highly effective. Practical implications This study not only inspires the practical use of online credibility and performance data for identifying malicious web domains but also provides an effective resampling approach for handling the class imbalance issue in the area of malicious web domain identification. Originality/value Online credibility and performance data are applied to build malicious web domain identification models using machine learning techniques. An integrated resampling approach is proposed to address the class imbalance issue. The performance of the proposed approach is confirmed based on real-world data sets with different imbalance ratios.


2022 ◽  
Vol 2022 ◽  
pp. 1-28
Author(s):  
Senthil Kumaran Selvaraj ◽  
Aditya Raj ◽  
R. Rishikesh Mahadevan ◽  
Utkarsh Chadha ◽  
Velmurugan Paramasivam

One of the most suitable methods for the mass production of complicated shapes is injection molding due to its superior production rate and quality. The key to producing higher quality products in injection molding is proper injection speed, pressure, and mold design. Conventional methods relying on the operator’s expertise and defect detection techniques are ineffective in reducing defects. Hence, there is a need for more close control over these operating parameters using various machine learning techniques. Neural networks have considerable applications in the injection molding process consisting of optimization, prediction, identification, classification, controlling, modeling, and monitoring, particularly in manufacturing. In recent research, many critical issues in applying machine learning and neural network in injection molding in practical have been addressed. Some problems include data division, collection, and preprocessing steps, such as considering the inputs, networks, and outputs, algorithms used, models utilized for testing and training, and performance criteria set during validation and verification. This review briefly explains working on machine learning and artificial neural network and optimizing injection molding in industries.


Author(s):  
G. Maria Jones ◽  
S. Godfrey Winster

The ever-rapid development of technology in today's world tends to provide us with a dramatic explosion of data, leading to its accumulation and thus data computation has amplified in comparison to the recent past. To manage such complex data, emerging new technologies are enabled specially to identify crime patterns, as crime-related data is escalating. These digital technologies have the potential to manipulate and also alter the pattern. To combat this, machine learning techniques are introduced which have the ability to analyse such voluminous data. In this work, the authors intend to understand and implement machine learning techniques in real time data analysis by means of Python. The detailed explanation in preparing the dataset, understanding, visualizing the data using pandas, and performance measure of algorithm is evaluated.


2017 ◽  
Vol 48 (5) ◽  
pp. 78-94 ◽  
Author(s):  
Giorgio Locatelli ◽  
Miljan Mikic ◽  
Milos Kovacevic ◽  
Naomi Brookes ◽  
Nenad Ivanisevic

Megaprojects are often associated with poor delivery performance and poor benefits realization. This article provides a method of identifying, in a quantitative and rigorous manner, the characteristics related to project management success in megaprojects. It provides an investigation of how stakeholders can use this knowledge to ensure more effective design and delivery for megaprojects. The research is grounded in 44 mega-projects and a systematic, empirically based methodology that employs the Fisher's exact test and machine learning techniques to identify the correlation between megaprojects’ characteristics and performance, paving the way to an understanding of their causation.


Change detection is used to find whether the changes happened or not between two different time periods using remote sensing images. We can use various machine learning techniques and deep learning techniques for the change detection analysis using remote sensing images. This paper mainly focused on computational and performance analysis of both techniques in the application of change detection .For each approach, we considered ten different kinds of algorithms and evaluated the performance. Moreover, in this research work, we have analyzed merits and demerits of each method which have used to change detection.


Author(s):  
Jai Narayan Tripathi ◽  
Heman Maheshbhai Vaghasiya ◽  
Dinesh Junjariya ◽  
Aksh Chordia

Sign in / Sign up

Export Citation Format

Share Document