scholarly journals High Definition Map-Based Localization Using ADAS Environment Sensors for Application to Automated Driving Vehicles

2020 ◽  
Vol 10 (14) ◽  
pp. 4924
Author(s):  
Donghoon Shin ◽  
Kang-moon Park ◽  
Manbok Park

This paper presents high definition (HD) map-based localization using advanced driver assistance system (ADAS) environment sensors for application to automated driving vehicles. A variety of autonomous driving technologies are being developed using expensive and high-performance sensors, but limitations exist due to several practical issues. In respect of the application of autonomous driving cars in the near future, it is necessary to ensure autonomous driving performance by effectively utilizing sensors that are already installed for ADAS purposes. Additionally, the most common localization algorithm, which is usually used lane information only, has a highly unstable disadvantage in the absence of that information. Therefore, it is essential to ensure localization performance with other road features such as guardrails when there are no lane markings. In this study, we would like to propose a localization algorithm that could be implemented in the near future by using low-cost sensors and HD maps. The proposed localization algorithm consists of several sections: environment feature representation with low-cost sensors, digital map analysis and application, position correction based on map-matching, designated validation gates, and extended Kalman filter (EKF)-based localization filtering and fusion. Lane information is detected by monocular vision in front of the vehicle. A guardrail is perceived by radar by distinguishing low-speed object measurements and by accumulating several steps to extract wall features. These lane and guardrail information are able to correct the host vehicle position by using the iterative closest point (ICP) algorithm. The rigid transformation between the digital high definition map (HD map) and environment features is calculated through ICP matching. Each corrected vehicle position by map-matching is selected and merged based on EKF with double updating. The proposed algorithm was verified through simulation based on actual driving log data.

Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3145 ◽  
Author(s):  
Kichun Jo ◽  
Chansoo Kim ◽  
Myoungho Sunwoo

High Definition (HD) maps are becoming key elements of the autonomous driving because they can provide information about the surrounding environment of the autonomous car without being affected by the real-time perception limit. To provide the most recent environmental information to the autonomous driving system, the HD map must maintain up-to-date data by updating changes in the real world. This paper presents a simultaneous localization and map change update (SLAMCU) algorithm to detect and update the HD map changes. A Dempster–Shafer evidence theory is applied to infer the HD map changes based on the evaluation of the HD map feature existence. A Rao–Blackwellized particle filter (RBPF) approach is used to concurrently estimate the vehicle position and update the new map state. The detected and updated map changes by the SLAMCU are reported to the HD map database in order to reflect the changes to the HD map and share the changing information with the other autonomous cars. The SLAMCU was evaluated through experiments using the HD map of traffic signs in the real traffic conditions.


2021 ◽  

Current advanced driver-assistance systems (ADAS) and automated driving systems (ADS) rely on high-definition (HD) maps to enable a range of features and functions. These maps can be viewed as an additional sensor from an ADAS or ADS perspective as they impact overall system confidence, reduce system computational resource needs, help improve comfort and convenience, and ultimately contribute to system safety. However, HD mapping technology presents multiple challenges to the automotive industry. Unsettled Issues on HD Mapping Technology for Autonomous Driving and ADAS identifies the current unsettled issues that need to be addressed to reach the full potential of HD maps for ADAS and ADS technology and suggests some possible solutions for initial map creation, map change detection and updates, and map safety levels.


2021 ◽  
Vol 11 (16) ◽  
pp. 7225
Author(s):  
Eugenio Tramacere ◽  
Sara Luciani ◽  
Stefano Feraco ◽  
Angelo Bonfitto ◽  
Nicola Amati

Self-driving vehicles have experienced an increase in research interest in the last decades. Nevertheless, fully autonomous vehicles are still far from being a common means of transport. This paper presents the design and experimental validation of a processor-in-the-loop (PIL) architecture for an autonomous sports car. The considered vehicle is an all-wheel drive full-electric single-seater prototype. The retained PIL architecture includes all the modules required for autonomous driving at system level: environment perception, trajectory planning, and control. Specifically, the perception pipeline exploits obstacle detection algorithms based on Artificial Intelligence (AI), and the trajectory planning is based on a modified Rapidly-exploring Random Tree (RRT) algorithm based on Dubins curves, while the vehicle is controlled via a Model Predictive Control (MPC) strategy. The considered PIL layout is implemented firstly using a low-cost card-sized computer for fast code verification purposes. Furthermore, the proposed PIL architecture is compared in terms of performance to an alternative PIL using high-performance real-time target computing machine. Both PIL architectures exploit User Datagram Protocol (UDP) protocol to properly communicate with a personal computer. The latter PIL architecture is validated in real-time using experimental data. Moreover, they are also validated with respect to the general autonomous pipeline that runs in parallel on the personal computer during numerical simulation.


Author(s):  
Mahdi O. Karkush ◽  
Mahmoud D. Ahmed ◽  
Salim M. Al-Ani

The current study focused on reviewing the rapid growing of using magnetic water in different fields of science and measure the influence of several intensities of magnetization on the chemical and electrical properties of tap water treated by reverse osmosis. The work includes circulation of water for 24 h. in magnetic fields of intensity 500, 1000, 1500, and 2000 G. The magnetization of water causes increasing some positive and negative ions in water such as (Mg, K, Na, Cl¯, Alkaline and SiO2) and decreasing some positive and negative ions (Ca and SO3). In the near future, the application of concepts of sustainability development in civil engineering have the to produce structures in harmony with these concepts through using of high-performance materials with less impacts on the environmental and have low cost. The main application of using magnetic water is improvement the geotechnical properties of soil through precipitation of calcite which increases the bond between soil particles and then strength of soil.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1389 ◽  
Author(s):  
Joon Rhee ◽  
Jiwon Seo

Curb detection and localization systems constitute an important aspect of environmental recognition systems of autonomous driving vehicles. This is because detecting curbs can provide information about the boundary of a road, which can be used as a safety system to prevent unexpected intrusions into pedestrian walkways. Moreover, curb detection and localization systems enable the autonomous vehicle to recognize the surrounding environment and the lane in which the vehicle is driving. Most existing curb detection and localization systems use multichannel light detection and ranging (lidar) as a primary sensor. However, although lidar demonstrates high performance, it is too expensive to be used for commercial vehicles. In this paper, we use ultrasonic sensors to implement a practical, low-cost curb detection and localization system. To compensate for the relatively lower performance of ultrasonic sensors as compared to other higher-cost sensors, we used multiple ultrasonic sensors and applied a series of novel processing algorithms that overcome the limitations of a single ultrasonic sensor and conventional algorithms. The proposed algorithms consisted of a ground reflection elimination filter, a measurement reliability calculation, and distance estimation algorithms corresponding to the reliability of the obtained measurements. The performance of the proposed processing algorithms was demonstrated by a field test under four representative curb scenarios. The availability of reliable distance estimates from the proposed methods with three ultrasonic sensors was significantly higher than that from the other methods, e.g., 92.08% vs. 66.34%, when the test vehicle passed a trapezoidal-shaped road shoulder. When four ultrasonic sensors were used, 96.04% availability and 13.50 cm accuracy (root mean square error) were achieved.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2166 ◽  
Author(s):  
Jeong Min Kang ◽  
Tae Sung Yoon ◽  
Euntai Kim ◽  
Jin Bae Park

Accurate vehicle localization is important for autonomous driving and advanced driver assistance systems. Existing precise localization systems based on the global navigation satellite system cannot always provide lane-level accuracy even in open-sky environments. Map-based localization using high-definition (HD) maps is an interesting method for achieving greater accuracy. We propose a map-based localization method using a single camera. Our method relies on road link information in the HD map to achieve lane-level accuracy. Initially, we process the image—acquired using the camera of a mobile device—via inverse perspective mapping, which shows the entire road at a glance in the driving image. Subsequently, we use the Hough transform to detect the vehicle lines and acquire driving link information regarding the lane on which the vehicle is moving. The vehicle position is estimated by matching the global positioning system (GPS) and reference HD map. We employ iterative closest point-based map-matching to determine and eliminate the disparity between the GPS trajectories and reference map. Finally, we perform experiments by considering the data of a sophisticated GPS/inertial navigation system as the ground truth and demonstrate that the proposed method provides lane-level position accuracy for vehicle localization.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1870 ◽  
Author(s):  
Zhongyang Xiao ◽  
Diange Yang ◽  
Tuopu Wen ◽  
Kun Jiang ◽  
Ruidong Yan

Real-time vehicle localization (i.e., position and orientation estimation in the world coordinate system) with high accuracy is the fundamental function of an intelligent vehicle (IV) system. In the process of commercialization of IVs, many car manufacturers attempt to avoid high-cost sensor systems (e.g., RTK GNSS and LiDAR) in favor of low-cost optical sensors such as cameras. The same cost-saving strategy also gives rise to an increasing number of vehicles equipped with High Definition (HD) maps. Rooted upon these existing technologies, this article presents the concept of Monocular Localization with Vector HD Map (MLVHM), a novel camera-based map-matching method that efficiently aligns semantic-level geometric features in-camera acquired frames against the vector HD map in order to achieve high-precision vehicle absolute localization with minimal cost. The semantic features are delicately chosen for the ease of map vector alignment as well as for the resiliency against occlusion and fluctuation in illumination. The effective data association method in MLVHM serves as the basis for the camera position estimation by minimizing feature re-projection errors, and the frame-to-frame motion fusion is further introduced for reliable localization results. Experiments have shown that MLVHM can achieve high-precision vehicle localization with an RMSE of 24 cm with no cumulative error. In addition, we use low-cost on-board sensors and light-weight HD maps to achieve or even exceed the accuracy of existing map-matching algorithms.


Author(s):  
G. J. Tsai ◽  
K. W. Chiang ◽  
N. El-Sheimy

<p><strong>Abstract.</strong> With advances in computing and sensor technologies, onboard systems can deal with a large amount of data and achieve real-time process continuously and accurately. In order to further enhance the performance of positioning, high definition map (HD map) is one of the game changers for future autonomous driving. Instead of directly using Inertial Navigation System and Global Navigation Satellite System (INS/GNSS) navigation solutions to conduct the Direct Geo-referencing (DG) and acquiring 3D mapping information, Simultaneous Localization and Mapping (SLAM) relies heavily on environmental features to derive the position and attitude as well as conducting the mapping at the same time. In this research, the new structure is proposed to integrate the INS/GNSS into LiDAR Odometry and Mapping (LOAM) algorithm and enhance the mapping performance. The first contribution is using the INS/GNSS to provide the short-term relative position information for the mapping process when the LiDAR odometry process is failed. The checking process is built to detect the divergence of LiDAR odometry process based on the residual from correspondences of features and innovation sequence of INS/GNSS. More importantly, by integrating with INS/GNSS, the whole global map is located in the standard global coordinate system (WGS84) which can be shared and employed easily and seamlessly. In this research, the designed land vehicle platform includes commercial INS/GNSS integrated product as a reference, relatively low-cost and lower grade INS system and Velodyne LiDAR with 16 laser channels, respectively. The field test is conducted from outdoor to the indoor underground parking lot and the final solution using the proposed method has a significant improvement as well as building a more accurate and reliable map for future use.</p>


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7283
Author(s):  
Taohua Zhou ◽  
Mengmeng Yang ◽  
Kun Jiang ◽  
Henry Wong ◽  
Diange Yang

With the rapid development of automated vehicles (AVs), more and more demands are proposed towards environmental perception. Among the commonly used sensors, MMW radar plays an important role due to its low cost, adaptability In different weather, and motion detection capability. Radar can provide different data types to satisfy requirements for various levels of autonomous driving. The objective of this study is to present an overview of the state-of-the-art radar-based technologies applied In AVs. Although several published research papers focus on MMW Radars for intelligent vehicles, no general survey on deep learning applied In radar data for autonomous vehicles exists. Therefore, we try to provide related survey In this paper. First, we introduce models and representations from millimeter-wave (MMW) radar data. Secondly, we present radar-based applications used on AVs. For low-level automated driving, radar data have been widely used In advanced driving-assistance systems (ADAS). For high-level automated driving, radar data is used In object detection, object tracking, motion prediction, and self-localization. Finally, we discuss the remaining challenges and future development direction of related studies.


2020 ◽  
Author(s):  
D. S. Akerib ◽  
A. Ames ◽  
M. Breidenbach ◽  
M. Bressack ◽  
P. A. Breur ◽  
...  

AbstractWe have implemented an “Acute Shortage Ventilator” (ASV) motivated by the COVID-19 pandemic and the possibility of severe ventilator shortages in the near future. The unit cost per ventilator is less than $400 US excluding the patient circuit parts. The ASV mechanically compresses a self-inflating bag resuscitator, uses a modified patient circuit, and is commanded by a microcontroller and an optional laptop. It operates in both Volume-Controlled Assist-Control mode and a Pressure-Controlled Assist-Control mode. It has been tested using an artificial lung against the EURS guidelines. The key design goals were to develop a simple device with high performance for short-term use, made primarily from common hospital parts and generally-available non-medical components, and at low cost and ease in manufacturing.


Sign in / Sign up

Export Citation Format

Share Document