scholarly journals Axial and Bending Bearing Capacity of Double-Steel-Concrete Composite Shear Walls

2020 ◽  
Vol 10 (14) ◽  
pp. 4935
Author(s):  
Peiyao Zhang ◽  
Quanquan Guo ◽  
Fei Ke ◽  
Weiyi Zhao ◽  
Yinghua Ye

Double steel-concrete composite shear wall is a novel composite structure. Due to its good mechanical properties, it has been considered as a substitute for reinforced concrete walls in nuclear facilities, marine environmental structures, and high-rise buildings. However, the design method of the double-steel concrete composite shear wall is lacking. The purpose of this paper is to propose the bending capacity formula under large and small eccentric loads. By summarizing the test results of 49 steel-concrete composite double shear walls under cyclic loading from different studies, it was found that the bending failure of double-steel-concrete composite shear walls was featured by the concrete crushing at the bottom. A finite element model was established and it could simulate the axial and bending performance of double steel-concrete composite shear walls reasonably well. According to the experimental results and FE analysis, the primary assumptions for calculating the axial and bending bearing capacity of the double steel-concrete composite shear walls were proposed. Based on these assumptions, the bearing capacity formulas were derived according to the equilibrium theory of the cross section. The calculation results obtained by the bearing capacity formulas were in good agreement with the test results.

2020 ◽  
Vol 23 (10) ◽  
pp. 2188-2203
Author(s):  
Zhao Nannan ◽  
Wang Yaohong ◽  
Han qing ◽  
Su Hao

Composite shear walls are widely used in high-rise buildings because of their high bearing capacity. To improve the bearing capacity of ordinary shear walls, restraining elements are usually installed at both boundaries or within the wall body. In this article, two different restraining elements, namely, a rectangular steel tube and a column-type reinforcement (the whole wall body was restrained by segmented stirrups and tied by diagonal bars), were applied to the boundary frame and wall body of the shear wall either jointly or separately. A new type of steel-concrete composite shear wall, referred to as a composite shear wall incorporating a concrete-filled steel tube boundary and column-type reinforced wall, was proposed. In addition, three specimens with different restraining elements, namely, a column-type reinforced shear wall, a concrete-filled steel tube boundary shear wall and an ordinary reinforced concrete shear wall, were presented for comparison. The influences of the two different restraining elements on the seismic performance and bearing capacity of the shear walls were analyzed from four perspectives of failure mode, hysteresis behavior, stiffness and residual deformation, and the equivalent lateral pressures of the two restraining elements were calculated. Based on the plane-section assumption, expressions for the crack, yield, peak and ultimate bearing capacities were derived, and the effects of the two restraining elements on the peak and ultimate bearing capacities were considered. The results show that these two restraining elements significantly improved the bearing capacity of the shear wall specimens, and the concrete-filled steel tube restraining element was more effective than the column-type reinforced restraining element. Finally, the calculated values of the bearing capacity of the four different restraining elements of the shear wall specimens proposed in this article were in good agreement with the experimental values.


2018 ◽  
Vol 22 (3) ◽  
pp. 656-669 ◽  
Author(s):  
Hetao Hou ◽  
Weiqi Fu ◽  
Canxing Qiu ◽  
Jirun Cheng ◽  
Zhe Qu ◽  
...  

This study proposes a new type of shear wall, namely, the concrete-filled steel tube composite shear wall, for high performance seismic force resisting structures. In order to study the seismic behavior of concrete-filled steel tube composite shear wall, cyclic loading tests were conducted on three full-scale specimens. One conventional reinforced concrete shear wall was included in the testing program for comparison purpose. Regarding the seismic performance of the shear walls, the failure mode, deformation capacity, bearing capacity, ductility, hysteretic characteristics, and energy dissipation are key parameters in the analysis procedure. The testing results indicated that the bearing capacity, the ductility, and the energy dissipation of the concrete-filled steel tube composite shear walls are greater than that of conventional reinforced concrete shear walls. In addition, the influence of axial compression ratio on the seismic behavior of concrete-filled steel tube composite shear wall is also investigated. It was found that higher axial compression ratio leads to an increase in the bearing capacity of concrete-filled steel tube composite shear walls while a reduction in the ductility capacity.


2017 ◽  
Vol 2017 ◽  
pp. 1-20
Author(s):  
Ulf Arne Girhammar ◽  
Bo Källsner

The authors present an experimental and analytical study of slotted-in connections for joining walls in the Masonite flexible building (MFB) system. These connections are used for splicing wall elements and for tying down uplifting forces and resisting horizontal shear forces in stabilizing walls. The connection plates are inserted in a perimeter slot in the PlyBoard™ panel (a composite laminated wood panel) and fixed mechanically with screw fasteners. The load-bearing capacity of the slotted-in connection is determined experimentally and derived analytically for different failure modes. The test results show ductile postpeak load-slip characteristics, indicating that a plastic design method can be applied to calculate the horizontal load-bearing capacity of this type of shear walls.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yuliang Wang ◽  
Congcong Wang ◽  
Zhixing Cao

Based on the research of composite walls at home and abroad, a construction method of continuous opening of the insulation layer in the specimen is proposed. In the edge component of the composite wall, the insulation layer should be thinned appropriately, the concrete on both sides should be thickened correspondingly, and U-shaped reinforcement should be used instead of stirrup. To study its axial compression test performance, five 1/2 scale composite shear wall specimens are tested under axial compression, including three composite wall specimens and two solid wall contrast specimens. The failure mode, load-bearing performance, deformation performance, and the collaborative work performance of wall are analyzed. The results show that the failure characteristics of the composite shear wall are similar to those of the solid wall, with splitting cracks at the corners and inverted triangular conical splitting at the top of the wall along the wall height direction, with no obvious bulging in the middle of the wall. The tie action of the ribs makes the concrete walls on both sides of the composite shear wall have good integrity and cooperative performance; the installation of the thermal insulation layer increases the overall thickness of the wall, improves the stability of the composite wall, and makes the composite wall axially compressed. The bearing capacity is not significantly reduced compared to the solid walls. Finally, according to the test results, the calculation formula of axial compression bearing capacity of composite shear wall is given, which provides the basis for the formulation of the code and engineering application.


Author(s):  
P. P. Phadnis ◽  
V. V. Karjinni

The concept of steel-concrete composite shear wall is introduced due to the benefits achieved by integrating both the materials. These are structural walls, where steel profiles are encased at the boundary elements. Due to their higher lateral strength and stiffness, they offer a good alternative to improve earthquake resistance over conventional reinforced concrete shear walls in medium and high-rise buildings. Current literature shows that, design procedure of such composite shear walls is not addressed in developing country codes. Hence, a design of steel-concrete composite shear wall is proposed in the present paper on the basis of existing theory and with the help of standard codes. The web portion of shear wall has to be designed as per provisions of Eurocode 8. For the design of composite boundary elements, design norms of composite columns are followed. Also the design of shear stud connectors is adopted according to Eurocode 4.


2019 ◽  
Vol 13 (03n04) ◽  
pp. 1940006
Author(s):  
W. C. Xue ◽  
Y. Li ◽  
L. Cai ◽  
X. Hu

Compared with traditional precast concrete composite shear walls (PCCSWs) with two boundary elements adjacent to edges, the PCCSWs with multiple boundary elements investigated in this paper have extra boundary elements at the intersections with other shear walls. In this paper, low reversed cyclic loading tests were conducted on three full-scale shear wall specimens with multiple boundary elements under in-plane loading and two full-scale shear wall specimens under out-of-plane loading. The in-plane loaded specimens included a PCCSW with double precast layers (i.e. precast concrete double skin shear wall, PCDSSW), a PCCSW with single precast layer, and a cast-in-pace (CIP) control specimen, whereas the out-of-plane loaded specimens included a PCDSSW and a CIP control specimen. Test results revealed that all specimens failed in bending. The hysteresis loops of the precast composite specimens were stable but slightly pinching, which were similar to those of the corresponding CIP control specimen. Compared with the CIP specimens, the PCDSSWs showed similar energy dissipation. The loading capacity of the precast composite specimens was generally a little lower than that of the corresponding CIP specimen with difference not more than 15%. In the in-plane loading tests, the PCDSSW reached higher displacement ductility (2.45) than the CIP specimen (1.88), whereas the ductility of the PCCSW with single precast layer was relatively low. Regarding the specimens under out-of-plane loading, the ductility of the PCDSSW (3.83) was close to that of the CIP specimen (3.02). Moreover, the stiffness degradation of the precast composite specimens was found to be comparable to that of the control specimens. Based on the test results, a restoring force model was developed.


2018 ◽  
Vol 38 (2) ◽  
pp. 131-142
Author(s):  
Dan Zhang ◽  
Zhong Tao ◽  
Lei Zhang

A review on the previous studies shows that limited analytical or experimental studies on the low-rise concealed truss shear walls with external columns under monotonic loading have already been conducted. The combination of concealed truss was welded to I-shaped steel frame and flat steel support. Two different aspect ratio composite shear walls were tested under static monotonic loading, and the failure mode, bearing capacity, ductility and stiffness were explored. A finite element model was developed and used to simulate the composite shear walls under constant axial load and lateral loading. The comparison of test results confirmed that the finite element model could predict the behavior of composite shear walls accurately. Meanwhile, stress analyses of the specimens were studied to simulate stress distribution of reinforcement, and to analyze the steel of composite shear wall with external columns at different loading stages. Taken together, this study could be a basis for developing an accurately simplified model.


2019 ◽  
Vol 2019 ◽  
pp. 1-22 ◽  
Author(s):  
Yu Yu ◽  
Min Gan ◽  
Yan Zhang ◽  
Liren Li ◽  
Huakun Zhang

To study the antiseismic performance of the high-strength concrete composite shear wall with built-in steel plates, an experiment on a high-strength concrete composite shear wall with four built-in steel plates (SPRCW-1∼4) was set up. Based on the experimental result, the paper discusses the antiseismic performance, failure mode, and failure mechanism of the high-strength concrete composite shear wall with built-in steel plates under different steel ratios and different positions of steel plates. The experimental result has shown that the differences in steel plate position and steel ratios have certain effects on wall cracking. The use of high steel content and the placement of steel plates on both sides of the wall can limit wall cracking to some extent. When the bearing capacity of the steel plates located on both sides of the wall is larger than that in the middle of the wall, a high content of steel in the wall can effectively increase the bearing capacity of the test piece to some extent. Under a high axial compression ratio, the horizontal bar of the wall can substantially limit the vertical cracks in concrete arising from compression. Moreover, the built-in steel plates in the shear wall play a significant role in inhibiting the propaganda of the oblique cracks under the action of earthquakes. The research result has very good economy and operability and can provide a basis for promotion and application of the mid- and high-rise buildings in regions with high seismic intensity.


Fibers ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 75
Author(s):  
Ke Shi ◽  
Mengyue Zhang ◽  
Pengfei Li ◽  
Ru Xue ◽  
Peibo You ◽  
...  

To improve the seismic behavior of shear walls, a new composite shear wall composed of a steel-fiber-reinforced high-strength concrete (SFRHC) web and two square concrete-filled steel tube (CFST) columns, namely a steel-fiber-reinforced concrete shear wall with CFST columns, is proposed in this paper. Therefore, the main purpose of this paper is to present an experimental investigation of the seismic behavior of the SFRHC shear wall with CFST columns. Pseudo-static tests were carried out on seven composite shear walls, and the seismic performance of the shear walls was studied and quantified in terms of the aspects of energy consumption, ductility and stiffness degradation. Furthermore, the experimental results indicated that adding steel fiber can effectively restrain the crack propagation of composite shear walls and further help to improve the ductility and energy dissipation capacity of composite shear walls and delay the degradation of their lateral stiffness and force. Moreover, the seismic behavior of the SFRHC shear wall with CFST columns was obviously superior to that of the conventionally reinforced shear wall, in terms of load-bearing capacity, ductility, stiffness and energy dissipation capacity, because of the confinement effect of the CFST columns on the web. Finally, the preliminary study demonstrated that the composite shear wall has good potential to be used in regions with high seismic risk.


Sign in / Sign up

Export Citation Format

Share Document