scholarly journals Selected Properties of Overlaid Magnesium Based Composite Panels for Flooring

2020 ◽  
Vol 10 (15) ◽  
pp. 5028
Author(s):  
Fidan Aslanova ◽  
Gozen Elkiran ◽  
Salim Hiziroglu ◽  
Serkan Ilseven

The objective of this work was to evaluate some of the mechanical and physical properties of the flooring materials manufactured from panels having magnesia substrate overlaid with oak veneer (Querqus alba) and linoleum sheets. Commercially manufactured panels were used in this work. Bending characteristics, internal bond strength, thickness swelling, and surface quality of the samples were evaluated. The highest modulus of elasticity (MOE) value of 4406 MPa for the sample type-A2 was loaded in the direction of the substrate followed by 3478 MPa for linoleum covered samples which were loaded in the same direction. Internal bond strength values of the panels did not show any significant differences from each other. Dimensional stability of the specimens in the form of thickness swelling for both 2-h and 24-h water soaking tests resulted in values ranging from 0.11 to 0.19%. The surface quality of the samples was not substantially influenced as a function of water exposure. Based on the results in this work magnesium substrate overlaid with oak veneer and linoleum panels could have potential to be used as flooring material with accepted properties.

2021 ◽  
Vol 115 ◽  
pp. 55-62
Author(s):  
Stella Rzyska-Pruchnik ◽  
Grzegorz Kowaluk

The influence of particleboard resination on their internal bond strength. The aim of the project was to investigate the main mechanical and physical properties of particleboards, especially focused on internal bond, in terms of their resination. For the tests, the particleboards have been produced in laboratory conditions with the following glue content: 7, 10, 15, 30 and 50%. Particular attention was paid for examining the mechanical property – tensile strength perpendicular to surfaces (Internal Bond – IB). In addition, there were investigated modulus of elasticity (MOE), modulus of rupture (MOR) density and density profile. In the light of above mentioned tests, there is no positive effect of improvement of tested parameters when raise resination over 30% when producing particleboards. With the resination increase from 7 to 50% a significant change (densification) of panels’ structure, as well as differences between face and core layers density have been found.


Polymers ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1327
Author(s):  
Conrad M. Sala ◽  
Eduardo Robles ◽  
Grzegorz Kowaluk

The sizeable global production of wood-based products requires new sources of raw material, but also creates large quantities of wastes or composites that do not comply with requirements. In this study, the influence of different shares of recovered high-density fiberboards (HDF-r), reversed into the production, on industrial HDF properties, has been examined. HDF-r may be a suitable partial substitute for raw pinewood for industrial HDF production. Although most of the mechanical properties, as well as thickness swelling and water absorption, had a linear decrease with the increase in the share of HDF-r share, the elaborated boards met most of the commercial requirements (EN 622-5). The property that did not meet the requirements was the internal bond strength for panels with 10% of HDF-r. The presented results show that, after some adjustments, it should be possible to produce HDF boards with up to 10% of recycled HDF being able to meet all commercial requirements.


Wood Research ◽  
2021 ◽  
Vol 66 (3) ◽  
pp. 331-340
Author(s):  
HASAN HÜSEYİN TAŞ ◽  
BİLGE ARSLAN ◽  
HÜLYA KALAYCIOĞLU

The effects of some polymer additives, also called super plasticizers, on selected physical and mechanical properties of cement bonded particle board were investigated. Two different kinds of poly carboxylic ether (PF300, DX40) and a melamine based polymer (300M) were added to the wood cement mixture. The ratios of polymer additives to the wood cement mixture were 1%, 1.2% and 1.4%. Cement bonded particleboards were manufactured with wood/cement (w/w) ratio of 1:3; target density of 1300 kg.m-3, and CaCl2 content of 5%. The cement bonded particleboards were tested for water absorption (2 and 24 hour), thickness swelling (2 and 24 hour), bending stiffness and strength and internal bond strength. Results of the study showed that most of the polymer addition decreased water absorption and thickness swelling of the boards. Replacement of cement with polymers increased internal bond strength and bending stiffness of the boards while bending strength was slightly reduced. Use of small amount of super plasticizers significantly improves most of the board properties.


Polymers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 114
Author(s):  
Roberto Magalhães ◽  
Beatriz Nogueira ◽  
Samaritana Costa ◽  
Nádia Paiva ◽  
João M. Ferra ◽  
...  

Wood-based products usually have serious limitations concerning contact with water, both because wood is a hygroscopic material and because the commonly used binder has low moisture resistance. This paper studies the effect of panel moisture content (MC) on the physico-mechanical properties of medium density fiberboards (MDF). Several commercial MDF boards produced in Europe were stored at room temperature and relative humidity (RH) for 9 weeks (approx. range 15–20 °C and 50–85% RH). Every week, a strip of each MDF board was cut out, divided into 5 × 5 cm test pieces and its internal bond strength (IB) was measured. A strong influence of MDF moisture content on internal bond strength was observed and therefore IB test pieces were stored in a climatic chamber (either at 20 °C, 55% RH and at 20 °C, 70% RH). A decreasing linear relation was established between IB and MC. It was found that this effect is reversible: after drying, internal bond strength rises again (following a slight hysteresis). This work reinforces the importance of conditioned storage before board properties analysis, as described in European Standard EN 319.


2020 ◽  
Vol 14 (1) ◽  
pp. 84
Author(s):  
Ragil Widyorini ◽  
Ikhwan Syahri ◽  
Greitta Kusuma Dewi

Bambu memiliki kandungan ekstraktif dengan persentase yang berbeda antar jenis bambu. Penelitian ini bertujuan untuk mengetahui pengaruh perlakuan ekstraksi pada jenis bambu yang berbeda terhadap sifat papan partikel. Dua jenis bambu digunakan yaitu Bambu Petung (Dendrocalamus asper) dan Bambu Wulung (Gigantochloa atroviolacea). Perlakuan ekstraksi digunakan pada partikel bambu sebelum proses pembuatan papan partikel yaitu tanpa ekstraksi, ekstraksi air dingin dan ekstraksi air panas. Papan partikel dibuat dalam ukuran 25 cm x 25 cm x 0,7 cm, target kerapatan 0,9 g/cm3, jumlah asam sitrat 30%, serta kondisi pengempaan suhu 180°C selama 10 menit. Hasil penelitian menunjukkan bahwa interaksi perlakuan ekstraksi dan jenis bambu hanya berpengaruh signifikan pada sifat penyerapan air dan keteguhan rekat internal, sedangkan jenis bambu berpengaruh signifikan pada nilai kadar air, modulus patah dan modulus elastisitas. Semua papan partikel yang dihasilkan memenuhi standar Japanese Industrial Standard (JIS) A 5908 tipe 13. Pada penelitian ini, papan partikel dari bambu wulung tanpa perlakuan ekstraksi mempunyai nilai yang memenuhi standar tipe 18 dan berpotensi sebagai bahan baku untuk produk furnitur eksterior. Perlakuan ekstraksi dapat meningkatkan secara signifikan nilai keteguhan rekat internal papan partikel bambu petung, walaupun secara umum dengan jumlah asam sitrat 30% perlakuan tersebut tidak diperlukan pada papan partikel bambu Properties of Particleboard made from Petung Bamboo (Dendrocalamus asper) and Wulung Bamboo (Gigantochloa atroviolacea) Particles with Extraction TreatmentAbstractBamboo has extractives, which the percentage of extractive was different based on bamboo species. This research aimed to investigate the effect of extraction treatment at different bamboo species on the particleboard properties. Two types of bamboo were used, i.e. Petung bamboo (Dendrocalamus asper) and Wulung bamboo (Gigantochloa atroviolacea). Three extraction treatments were conducted to the bamboo particles before the particleboard manufacture, i.e. unextracted, cold-water extraction, and hot-waterextraction. The particleboard was made in the size of 25 cm x 25 cm x 0.7 cm, target density of 0.9 g/cm³, citric acid content of 30%, and pressing temperature of 180°C for 10 min. The results showed that the interaction between extraction treatment and bamboo species significantly affected on the water absorption and internal bond strength, however bamboo species affected significantly on the moisture content, modulus of rupture, and modulus of elasticity. All of particleboards could met the requirement of the 13 type of Japanese Industrial Standard (JIS) A 5908. In this research, particleboards made from wulung bamboo particles without extraction treatment have properties that met the requirement of the 18 type and the products have potential to be as exterior materials for furniture. In general, an extraction treatment was not an important step on the manufacturing of bamboo particleboard using citric acid 30% as adhesive. However, the extraction treatment could increase significantly the internal bond strength of particleboard made from petung bamboo.


2019 ◽  
Vol 65 (1) ◽  
Author(s):  
Turgay Akbulut ◽  
Nadir Ayrilmis

Abstract The aim of the study was to develop three-layer medium-density fibreboard (MDF) manufacture by adding the coarse fibres in the middle layer, like three-layer particleboard. The liquid urea–formaldehyde (UF) resin was reduced from 10.5 to 6.5 wt% in the middle layer of the MDFs. The UF resin content was kept constant at 10 wt% in the surface layers of all the MDFs. Moreover, the average density of MDFs was decreased from 730 to 650 kg/m3. The internal bond strength of three-layer MDFs decreased with decreasing UF resin content (10.5 to 8.5 wt%) in the middle layer. However, the decreases in the internal bond strength were statistically not significant. The internal bond strength values of the MDFs having density between 730 and 675 kg/m3 did not show significant differences. The cost savings of the resin were 20% when the amount of resin was reduced from 10.5 to 8.5 wt%. Three-layer MDFs had lower resin consumption at lower densities over traditional single-layer MDFs produced in the same plant with the same material components without decreasing their technological properties. In conclusion, it can be said that three-layer MDF could be produced at a lower cost than traditional single-layer MDF.


Sign in / Sign up

Export Citation Format

Share Document