scholarly journals Computer-Aided Surgical Simulation for Correcting Complex Limb Deformities in Children

2020 ◽  
Vol 10 (15) ◽  
pp. 5181 ◽  
Author(s):  
Leonardo Frizziero ◽  
Gian Maria Santi ◽  
Alfredo Liverani ◽  
Francesca Napolitano ◽  
Paola Papaleo ◽  
...  

This work aims to present an in-house low-cost computer-aided simulation (CASS) process that was recently implemented in the preoperative planning of complex osteotomies for limb deformities in children. Five patients admitted to the Unit of Paediatric Orthopaedics and Traumatology from April 2018 to December 2019, for correcting congenital or post-traumatic limb deformities were included in the study. Three-dimensional (3D) digital models were generated from Computed Tomography (CT) scans, using free open-source software, and the surgery was planned and simulated starting from the 3D digital model. 3D printed sterilizable models were fabricated using a low-cost 3D printer, and animations of the operation were generated with the aim to accurately explain the operation to parents. All procedures were successfully planned using our CASS method and the 3D printed models were used during the operation, improving the understanding of the severely abnormal bony anatomy. The surgery was precisely reproduced according to CASS and the deformities were successfully corrected in four cases, while in one case, the intraoperative intentional undersizing of the bone osteotomy produced an incomplete correction of a congenital forearm deformity. Our study describes the application of a safe, effective, user-friendly, and low-cost CASS process in paediatric orthopaedics (PO) surgery. We are convinced that our study will stimulate the widespread adoption of this technological innovation in routine clinical practice for the treatment of rare congenital and post-traumatic limb deformities during childhood.

2021 ◽  
pp. bmjstel-2021-000868
Author(s):  
Ali Alakhtar ◽  
Alexander Emmott ◽  
Cornelius Hart ◽  
Rosaire Mongrain ◽  
Richard L Leask ◽  
...  

IntroductionThree-dimensional (3D) printed multimaterial ascending aortic simulators were created to evaluate the ability of polyjet technology to replicate the distensibility of human aortic tissue when perfused at physiological pressures.MethodsSimulators were developed by computer-aided design and 3D printed with a Connex3 Objet500 printer. Two geometries were compared (straight tube and idealised aortic aneurysm) with two different material variants (TangoPlus pure elastic and TangoPlus with VeroWhite embedded fibres). Under physiological pressure, β Stiffness Index was calculated comparing stiffness between our simulators and human ascending aortas. The simulators’ material properties were verified by tensile testing to measure the stiffness and energy loss of the printed geometries and composition.ResultsThe simulators’ geometry had no effect on measured β Stiffness Index (p>0.05); however, β Stiffness Index increased significantly in both geometries with the addition of embedded fibres (p<0.001). The simulators with rigid embedded fibres were significantly stiffer than average patient values (41.8±17.0, p<0.001); however, exhibited values that overlapped with the top quartile range of human tissue data suggesting embedding fibres can help replicate pathological human aortic tissue. Biaxial tensile testing showed that fiber-embedded models had significantly higher stiffness and energy loss as compared with models with only elastic material for both tubular and aneurysmal geometries (stiffness: p<0.001; energy loss: p<0.001). The geometry of the aortic simulator did not statistically affect the tensile tested stiffness or energy loss (stiffness: p=0.221; energy loss: p=0.713).ConclusionWe developed dynamic ultrasound-compatible aortic simulators capable of reproducing distensibility of real aortas under physiological pressures. Using 3D printed composites, we are able to tune the stiffness of our simulators which allows us to better represent the stiffness variation seen in human tissue. These models are a step towards achieving better simulator fidelity and have the potential to be effective tools for surgical training.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4740
Author(s):  
Sergio Terranova ◽  
Filippo Costa ◽  
Giuliano Manara ◽  
Simone Genovesi

A new class of Radio Frequency IDentification (RFID) tags, namely the three-dimensional (3D)-printed chipless RFID one, is proposed, and their performance is assessed. These tags can be realized by low-cost materials, inexpensive manufacturing processes and can be mounted on metallic surfaces. The tag consists of a solid dielectric cylinder, which externally appears as homogeneous. However, the information is hidden in the inner structure of the object, where voids are created to encrypt information in the object. The proposed chipless tag represents a promising solution for anti-counterfeiting or security applications, since it avoids an unwanted eavesdropping during the reading process or information retrieval from a visual inspection that may affect other chipless systems. The adopted data-encoding algorithm does not rely on On–Off or amplitude schemes that are commonly adopted in the chipless RFID implementations but it is based on the maximization of available states or the maximization of non-overlapping regions of uncertainty. The performance of such class of chipless RFID tags are finally assessed by measurements on real prototypes.


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
Tomás A. Georgiou ◽  
Davide Asnaghi ◽  
Alva Liang ◽  
Alice M. Agogino

This paper describes the development and testing of a low-cost three-dimensional (3D) printed wearable hand exoskeleton to assist people with limited finger mobility and grip strength. The function of the presented orthosis is to support and enable light intensity activities of daily living and improve the ability to grasp and hold objects. The Sparthan Exoskeleton prototype utilizes a cable-driven design applied to individual digits with motors. The initial prototype is presented in this paper along with a preliminary evaluation of durability and performance efficacy.


2021 ◽  
Vol 15 ◽  
Author(s):  
Rommel S. Araujo ◽  
Camille R. Silva ◽  
Severino P. N. Netto ◽  
Edgard Morya ◽  
Fabricio L. Brasil

Stroke survivors can be affected by motor deficits in the hand. Robotic equipment associated with brain–machine interfaces (BMI) may aid the motor rehabilitation of these patients. BMIs involving orthotic control by motor imagery practices have been successful in restoring stroke patients' movements. However, there is still little acceptance of the robotic devices available, either by patients and clinicians, mainly because of the high costs involved. Motivated by this context, this work aims to design and construct the Hand Exoskeleton for Rehabilitation Objectives (HERO) to recover extension and flexion movements of the fingers. A three-dimensional (3D) printing technique in association with textiles was used to produce a lightweight and wearable device. 3D-printed actuators have also been designed to reduce equipment costs. The actuator transforms the torque of DC motors into linear force transmitted by Bowden cables to move the fingers passively. The exoskeleton was controlled by neuroelectric signal—electroencephalography (EEG). Concept tests were performed to evaluate control performance. A healthy volunteer was submitted to a training session with the exoskeleton, according to the Graz-BCI protocol. Ergonomy was evaluated with a two-dimensional (2D) tracking software and correlation analysis. HERO can be compared to ordinary clothing. The weight over the hand was around 102 g. The participant was able to control the exoskeleton with a classification accuracy of 91.5%. HERO project resulted in a lightweight, simple, portable, ergonomic, and low-cost device. Its use is not restricted to a clinical setting. Thus, users will be able to execute motor training with the HERO at hospitals, rehabilitation clinics, and at home, increasing the rehabilitation intervention time. This may support motor rehabilitation and improve stroke survivors life quality.


2021 ◽  
Vol 18 (1) ◽  
pp. 07-13
Author(s):  
Neha Thakur ◽  
Hari Murthy

Three-dimensional printing (3DP) is a digitally-controlled additive manufacturing technique used for fast prototyping. This paper reviews various 3D printing techniques like Selective Laser Sintering (SLS), Fused Deposition Modeling, (FDM), Semi-solid extrusion (SSE), Stereolithography (SLA), Thermal Inkjet (TIJ) Printing, and Binder jetting 3D Printing along with their application in the field of medicine. Normal medicines are based on the principle of “one-size-fits-all”. This is not true always, it is possible medicine used for curing one patient is giving some side effects to another. To overcome this drawback “3D Printed medicines” are developed. In this paper, 3D printed medicines forming different Active Pharmaceutical Ingredients (API) are reviewed. Printed medicines are capable of only curing the diseases, not for the diagnosis. Nanomedicines have “theranostic” ability which combines therapeutic and diagnostic. Nanoparticles are used as the drug delivery system (DDS) to damaged cells’ specific locations. By the use of nanomedicine, the fast recovery of the disease is possible. The plant-based nanoparticles are used with herbal medicines which give low-cost and less toxic medication called nanobiomedicine. 4D and 5D printing technology for the medical field are also enlightened in this paper.


10.2196/19792 ◽  
2020 ◽  
Vol 6 (2) ◽  
pp. e19792
Author(s):  
Michelle Ho ◽  
Jared Goldfarb ◽  
Roxana Moayer ◽  
Uche Nwagu ◽  
Rohan Ganti ◽  
...  

Background Nasal osteotomy is a commonly performed procedure during rhinoplasty for both functional and cosmetic reasons. Teaching and learning this procedure proves difficult due to the reliance on nuanced tactile feedback. For surgical simulation, trainees are traditionally limited to cadaveric bones, which can be costly and difficult to obtain. Objective This study aimed to design and print a low-cost midface model for nasal osteotomy simulation. Methods A 3D reconstruction of the midface was modified using the free open-source design software Meshmixer (Autodesk Inc). The pyriform aperture was smoothed, and support rods were added to hold the fragments generated from the simulation in place. Several models with various infill densities were printed using a desktop 3D printer to determine which model best mimicked human facial bone. Results A midface simulation set was designed using a desktop 3D printer, polylactic acid filament, and easily accessible tools. A nasal osteotomy procedure was successfully simulated using the model. Conclusions 3D printing is a low-cost, accessible technology that can be used to create simulation models. With growing restrictions on trainee duty hours, the simulation set can be used by programs to augment surgical training.


2020 ◽  
pp. bmjstel-2020-000663
Author(s):  
Patrick Gallagher ◽  
Ryan Smith ◽  
Gillian Sheppard

BackgroundThere is a significant learning curve when teaching ultrasonography to medical trainees; task trainers can help learners to bridge this gap and develop their skills. Three-dimensional printing technology has the potential to be a great tool in the development of such simulators. ObjectiveThis scoping review aimed to identify what 3D-printed models have been used in ultrasound education to date, how they were created and the pros and limitations involved.DesignResearchers searched three online databases to identify 3D-printed ultrasound models used in medical education.ResultsTwelve suitable publications were identified for inclusion in this review. The models from included articles simulated largely low frequency and/or high stakes events, with many models simulating needle guidance procedures. Most models were created by using patient imaging data and a computer-aided design software to print structures directly or print casting molds. The benefits of 3D-printed educational trainers are their low cost, reproducibility, patient specificity and accuracy. The current limitations of this technology are upfront investments and a lack of optimisation of materials.ConclusionsThe use of 3D-printed ultrasound task trainers is in its infancy, and more research is needed to determine whether or not this technology will benefit medical learners in the future.


2020 ◽  
Vol 11 (1) ◽  
pp. 161-170
Author(s):  
J-R. R. Diego ◽  
Dan William C. Martinez ◽  
Gerald S. Robles ◽  
John Ryan C. Dizon

AbstractThis study addresses the need for assistive technology of people who lost control of their upper limbs as well as people who are undergoing rehabilitation. Loss of upper limb control causes lack of functionality and social acceptability especially for many people in developing countries with fewer available technology. The study develops a modern but low-cost prosthetic device that can be controlled by users using a smartphone and can be rapidly manufactured using three-dimensional printing (3D printing) of plastic materials. The development of the prosthetic device includes designing the mechanical and electronic parts, programming the Arduino board and Android application for control, simulation and analysis of 3D printed parts most subjected to stress, and 3D printing the parts under different settings. The device was tested in terms of time spent and capacity of lifting varying loads when not worn and when worn by users. The device can effectively lift 500 grams of load in one second for a person weighing between 50 to 60 kilograms.


Sign in / Sign up

Export Citation Format

Share Document