scholarly journals The Control of Volume Expansion and Porosity in Carbon Block by Carbon Black (CB) Addition for Increasing Thermal Conductivity

2020 ◽  
Vol 10 (17) ◽  
pp. 6068
Author(s):  
Min Il Kim ◽  
Jong Hoon Cho ◽  
Byong Chol Bai ◽  
Ji Sun Im

The graphite block as a phase change materials (PCMs) was manufactured by graphitization of a carbon block. Carbon blocks were prepared by filler (cokes or graphite) and binder (pitch). The binder-coated filler was thermally treated for carbonization. The gases generated from the evaporation of low molecular weight components in the binder pitch during the carbonization process were not released to the outside. Consequently, porosity and volume expansion were increased in artificial graphite, and thereby the thermal conductivity decreased. In this study, to prevent the decrease of thermal conductivity in the artificial graphite due to the disadvantages of binder pitch, the carbon block was prepared by the addition of carbon black, which can absorb low molecular weight compounds and release the generated gas. The properties of the prepared carbon blocks were analyzed by SEM, TGA, and thermal conductivity. The addition of carbon black (CB) decreased the porosity and volume expansion of the carbon blocks by 38.3% and 65.9%, respectively, and increased the thermal conductivity by 57.1%. The CB absorbed the low molecular weight compounds of binder pitch and induced the release of generated gases during the carbonization process to decrease porosity, and the thermal conductivity of the carbon block increased.

2017 ◽  
Vol 54 (4) ◽  
pp. 655-658
Author(s):  
Andrei Bejan ◽  
Dragos Peptanariu ◽  
Bogdan Chiricuta ◽  
Elena Bicu ◽  
Dalila Belei

Microfibers were obtained from organic low molecular weight compounds based on heteroaromatic and aromatic rings connected by aliphatic spacers. The obtaining of microfibers was proved by scanning electron microscopy. The deciphering of the mechanism of microfiber formation has been elucidated by X-ray diffraction, infrared spectroscopy, and atomic force microscopy measurements. By exciting with light of different wavelength, florescence microscopy revealed a specific optical response, recommending these materials for light sensing applications.


2020 ◽  
Vol 20 (15) ◽  
pp. 1532-1542 ◽  
Author(s):  
Miroslav Pohanka

Inhibitors of cholinesterases are a wide group of low molecular weight compounds with a significant role in the current pharmacology. Besides the pharmacological importance, they are also known as toxic compounds like military nerve agents. In the pharmacology, drugs for Alzheimer disease, myasthenia gravis and prophylaxis of poisoning by nerve agents can be mentioned as the relevant applications. Besides this, anti-inflammation and antiphrastic drugs are other pharmacological applications of these inhibitors. This review is focused on a survey of cholinesterase inhibitors with known or expected pharmacological impact and indications of their use. Recent literature with comments is provided here as well.


Metabolites ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 14
Author(s):  
Petr G. Lokhov ◽  
Dmitry L. Maslov ◽  
Steven Lichtenberg ◽  
Oxana P. Trifonova ◽  
Elena E. Balashova

A laboratory-developed test (LDT) is a type of in vitro diagnostic test that is developed and used within a single laboratory. The holistic metabolomic LDT integrating the currently available data on human metabolic pathways, changes in the concentrations of low-molecular-weight compounds in the human blood during diseases and other conditions, and their prevalent location in the body was developed. That is, the LDT uses all of the accumulated metabolic data relevant for disease diagnosis and high-resolution mass spectrometry with data processing by in-house software. In this study, the LDT was applied to diagnose early-stage Parkinson’s disease (PD), which currently lacks available laboratory tests. The use of the LDT for blood plasma samples confirmed its ability for such diagnostics with 73% accuracy. The diagnosis was based on relevant data, such as the detection of overrepresented metabolite sets associated with PD and other neurodegenerative diseases. Additionally, the ability of the LDT to detect normal composition of low-molecular-weight compounds in blood was demonstrated, thus providing a definition of healthy at the molecular level. This LDT approach as a screening tool can be used for the further widespread testing for other diseases, since ‘omics’ tests, to which the metabolomic LDT belongs, cover a variety of them.


Sign in / Sign up

Export Citation Format

Share Document