carbon block
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 12)

H-INDEX

3
(FIVE YEARS 1)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Bo Yang ◽  
Ruzhen Peng ◽  
Dan Zhao ◽  
Ni Yang ◽  
Yanqing Hou ◽  
...  

A TiB2 wettable cathode coating was deposited on a graphite carbon cathode material via atmospheric plasma spraying (APS). The microstructure and phase composition of the TiB2 coating were analyzed via scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy-dispersive X-ray spectroscopy (EDS). The wettability and corrosion resistance of the coating were studied in a molten-aluminum electrolytic system. The results showed that the surface of the TiB2 coating prepared via plasma spraying was flat and that the main phase of the coating was TiB2. The wettability between the TiB2 coating and liquid aluminum was better than that between graphite cathode carbon block and liquid aluminum. The abilities of the TiB2 coating and graphite cathode carbon block to resist sodium (Na) penetration and prevent molten salt corrosion were compared through a corrosion test. The TiB2 coating was found to have better resistance to Na penetration and better refractory cryolite corrosion resistance than graphite cathode carbon block.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1832
Author(s):  
Seungjoo Park ◽  
Seon Ho Lee ◽  
Song Mi Lee ◽  
Jin-Woo Park ◽  
Sung-Soo Kim ◽  
...  

High-density carbon blocks are much lighter than metals and have excellent mechanical properties and are one of the materials garnering attention to replace existing metal parts. In this study, a binderless coke was produced by changing the flow rates of nitrogen and air as a carrier gas during heat treatment of coal tar pitch and using this, a green body was formed at 150 MPa and carbonized to produce a high-density carbon block. We express the binderless coke produced in this way by N10A0, N7A3, N5A5, N3A7, N0A10 according to the ratio of nitrogen and air, and in the case of carbon block, we have added CB in front of it. We then considered the effect of oxygen content in the binderless cokes on the optical, chemical, and mechanical properties. It was observed that the produced binderless cokes develop into a dense mosaic structure with a small particle size as the air flow rate increased. To survey the change in oxygen content of the produced binderless coke, O1s and C1s regions were measured using X-ray photoelectric spectroscopy (XPS), and O1s/C1s was calculated. The O1s/C1s ratio steadily increased as the air flow rate increased, and in the case of N0A10, it increased about twice as much as that of N10A0 to 11.20%. β-resin has a very large effect on the mechanical strength of the carbon block in addition to air in the pitch. And in the case of CB-N0A10, it shows the best mechanical strength with a density of 1.72 g/cm3, bending strength of 87 MPa, and shore hardness of 93 HSD.


Author(s):  
Chia-Chen Wu ◽  
Nancy G. Love ◽  
Terese M. Olson

Identifying the breakthrough pattern of drinking water bacteria through faucet-mounted activated carbon block filters at the point of use using abiotic microspheres and biotic surrogates, fluorescent-tagged E. coli and P. aeruginosa.


2020 ◽  
Vol 10 (17) ◽  
pp. 6068
Author(s):  
Min Il Kim ◽  
Jong Hoon Cho ◽  
Byong Chol Bai ◽  
Ji Sun Im

The graphite block as a phase change materials (PCMs) was manufactured by graphitization of a carbon block. Carbon blocks were prepared by filler (cokes or graphite) and binder (pitch). The binder-coated filler was thermally treated for carbonization. The gases generated from the evaporation of low molecular weight components in the binder pitch during the carbonization process were not released to the outside. Consequently, porosity and volume expansion were increased in artificial graphite, and thereby the thermal conductivity decreased. In this study, to prevent the decrease of thermal conductivity in the artificial graphite due to the disadvantages of binder pitch, the carbon block was prepared by the addition of carbon black, which can absorb low molecular weight compounds and release the generated gas. The properties of the prepared carbon blocks were analyzed by SEM, TGA, and thermal conductivity. The addition of carbon black (CB) decreased the porosity and volume expansion of the carbon blocks by 38.3% and 65.9%, respectively, and increased the thermal conductivity by 57.1%. The CB absorbed the low molecular weight compounds of binder pitch and induced the release of generated gases during the carbonization process to decrease porosity, and the thermal conductivity of the carbon block increased.


2020 ◽  
Vol 2 (3) ◽  
Author(s):  
Katherine Alfredo ◽  
Jie Lin ◽  
Anjuman Islam ◽  
Zhi‐Wu Wang

Sign in / Sign up

Export Citation Format

Share Document