scholarly journals Generating Bessel-Gaussian Beams with Controlled Axial Intensity Distribution

2020 ◽  
Vol 10 (21) ◽  
pp. 7911
Author(s):  
Nikita Stsepuro ◽  
Pavel Nosov ◽  
Maxim Galkin ◽  
George Krasin ◽  
Michael Kovalev ◽  
...  

This paper investigated the diffraction of a Gaussian laser beam on a binary mask and a refractive axicon. The principles of the formation of a zero-order Bessel beam with sharp drops of the axial field intensity edges were discussed. A laser optical system based on an axicon for the formation of a Bessel beam with quasi-uniform distribution of axial field intensity was proposed. In the laser optical system, the influence of the axicon apex did not affect the output beam. The results of theoretical and experimental studies are presented. It is expected that the research results will have practical application in optical tweezers, imaging systems, as well as laser technologies using high-power radiation.

2020 ◽  
Vol 23 (1) ◽  
pp. 66-71
Author(s):  
E. A. Gurnevich ◽  
I. V. Moroz

The Smith-Purcell radiation of a charged particle moving in a periodic structure is analysed theoretically. The considered structure consists of two planar diffraction gratings with different periods which are formed by parallel conducting wires. The analytical expression for the spectral-angular distribution of radiation is obtained. It is shown that the angular distribution of radiation can be made narrower by using two gratings instead of one, and radiation intensity can be manipulated by parallel relative shift of gratings. The obtained results are of great importance for the research and development of high power radiation sources based on volume free-electron lasers.


2021 ◽  
Vol 53 (8) ◽  
Author(s):  
Quy Ho Quang ◽  
Thanh Thai Doan ◽  
Kien Bui Xuan ◽  
Thang Nguyen Manh

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1218
Author(s):  
Aleksandr Kulchitskiy

The article proposes a solution to the problem of increasing the accuracy of determining the main shaping dimensions of axisymmetric parts through a control system that implements the optical method of spatial resolution. The influence of the projection error of a passive optical system for controlling the geometric parameters of bodies of revolution from the image of its sections, obtained by a digital camera with non-telecentric optics, on the measurement accuracy is shown. Analytical dependencies are derived that describe the features of the transmission of measuring information of a system with non-telecentric optics in order to estimate the projection error. On the basis of the obtained dependences, a method for compensating the projection error of the systems for controlling the geometry of the main shaping surfaces of bodies of revolution has been developed, which makes it possible to increase the accuracy of determining dimensions when using digital cameras with a resolution of 5 megapixels or more, equipped with short-focus lenses. The possibility of implementing the proposed technique is confirmed by the results of experimental studies.


2021 ◽  
Vol 143 ◽  
pp. 107375
Author(s):  
Anatoly R. Melnikov ◽  
Arkady A. Samsonenko ◽  
Yaroslav V. Getmanov ◽  
Oleg A. Shevchenko ◽  
Darya A. Shevchenko ◽  
...  

Author(s):  
G. M. Loubriel ◽  
F. J. Zutavern ◽  
G. J. Denison ◽  
W. D. Helgeson ◽  
D. L. McLaughlin ◽  
...  

Author(s):  
N. M. Zhilo ◽  
M. O. Mikhailov ◽  
E. L. Litinskaia ◽  
K. V. Pozhar

Introduction. The transition of glucose into the blood during automated peritoneal dialysis with regeneration of the dialysis fluid leads to a decreased removal of excess fluid from the body and corresponding violations of the water-salt balance.Aim. To consider a system for automatically maintaining the concentration of glucose in the dialysate solution, which provides effective ultrafiltration, as well as to propose a non-contact photometric feedback sensor.Materials and methods. The sensor is an optical system of an IR laser diode with a power of 30 mW and a wavelength of 1600 nm, a photodiode and a quartz tube, through which the test solution circulates. The sensor measures the attenuation of the radiation passing through the solution in a pulsed mode and calculates the glucose concentration. The selected combination of digital filters provides compensation for the noise of the optical system. Experimental studies of the efficiency of the sensor were carried out on peritoneal dialysis solutions with various concentrations of urea, creatinine, uric acid and glucose. At the beginning of the experiments, the sensor was calibrated in a pure solution.Results. It was shown that the developed sensor makes it possible to measure the concentration of glucose in a solution for peritoneal dialysis in the range of 42…220 mmol / l with a relative error of about 15%. The time of one measurement is about 1 minute, which makes it possible to obtain up-to-date information on the current concentration of the solution.Conclusion. This combination of characteristics will allow the sensor to be used in artificial kidney wearable devices for assessing the glucose content in the solution, calculating the time to change the solution and as a feedback sensor in a system for maintaining the concentration of the osmotic agent.


2018 ◽  
Vol 10 (8) ◽  
pp. 883-890
Author(s):  
Qihui Zhou ◽  
Peiguo Liu ◽  
Bo Yi ◽  
Dingwang Yu

AbstractIn this paper, a self-actuated frequency-selective radome is presented and applied to a microstrip antenna. The radome acts as a self-triggered switchable screen to achieve adaptive electromagnetic protection in the L band. A prototype of the radome is fabricated to measure its transmission performance. The switchable characteristic is verified by a high-power radiation experiment carried out in a waveguide system. Besides, the antenna is placed under the radome to realize integration analysis, and the radiation performance of the composite antenna radome is measured in the anechoic chamber.


2021 ◽  
Author(s):  
Ulisses Andrade ◽  
Aloísio Garcia ◽  
Marcio Rocha
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document