scholarly journals A Novel Real-Time Virtual 3D Object Composition Method for 360° Video

2020 ◽  
Vol 10 (23) ◽  
pp. 8679
Author(s):  
Jaehyun Lee ◽  
Sungjae Ha ◽  
Philippe Gentet ◽  
Leehwan Hwang ◽  
Soonchul Kwon ◽  
...  

As highly immersive virtual reality (VR) content, 360° video allows users to observe all viewpoints within the desired direction from the position where the video is recorded. In 360° video content, virtual objects are inserted into recorded real scenes to provide a higher sense of immersion. These techniques are called 3D composition. For a realistic 3D composition in a 360° video, it is important to obtain the internal (focal length) and external (position and rotation) parameters from a 360° camera. Traditional methods estimate the trajectory of a camera by extracting the feature point from the recorded video. However, incorrect results may occur owing to stitching errors from a 360° camera attached to several high-resolution cameras for the stitching process, and a large amount of time is spent on feature tracking owing to the high-resolution of the video. We propose a new method for pre-visualization and 3D composition that overcomes the limitations of existing methods. This system achieves real-time position tracking of the attached camera using a ZED camera and a stereo-vision sensor, and real-time stabilization using a Kalman filter. The proposed system shows high time efficiency and accurate 3D composition.

Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


2019 ◽  
Author(s):  
F Harder ◽  
H Haubenreisser ◽  
S Sudarski ◽  
D Overhoff ◽  
U Attenberger ◽  
...  
Keyword(s):  

Author(s):  
Kenneth Krieg ◽  
Richard Qi ◽  
Douglas Thomson ◽  
Greg Bridges

Abstract A contact probing system for surface imaging and real-time signal measurement of deep sub-micron integrated circuits is discussed. The probe fits on a standard probe-station and utilizes a conductive atomic force microscope tip to rapidly measure the surface topography and acquire real-time highfrequency signals from features as small as 0.18 micron. The micromachined probe structure minimizes parasitic coupling and the probe achieves a bandwidth greater than 3 GHz, with a capacitive loading of less than 120 fF. High-resolution images of submicron structures and waveforms acquired from high-speed devices are presented.


Mathematics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1148
Author(s):  
Jewgeni H. Dshalalow ◽  
Ryan T. White

In a classical random walk model, a walker moves through a deterministic d-dimensional integer lattice in one step at a time, without drifting in any direction. In a more advanced setting, a walker randomly moves over a randomly configured (non equidistant) lattice jumping a random number of steps. In some further variants, there is a limited access walker’s moves. That is, the walker’s movements are not available in real time. Instead, the observations are limited to some random epochs resulting in a delayed information about the real-time position of the walker, its escape time, and location outside a bounded subset of the real space. In this case we target the virtual first passage (or escape) time. Thus, unlike standard random walk problems, rather than crossing the boundary, we deal with the walker’s escape location arbitrarily distant from the boundary. In this paper, we give a short historical background on random walk, discuss various directions in the development of random walk theory, and survey most of our results obtained in the last 25–30 years, including the very recent ones dated 2020–21. Among different applications of such random walks, we discuss stock markets, stochastic networks, games, and queueing.


Author(s):  
Yuefeng Wang ◽  
Kuang Mao ◽  
Tong Chen ◽  
Yanglong Yin ◽  
Shuibing He ◽  
...  

2021 ◽  
Vol 20 (3) ◽  
pp. 1-22
Author(s):  
David Langerman ◽  
Alan George

High-resolution, low-latency apps in computer vision are ubiquitous in today’s world of mixed-reality devices. These innovations provide a platform that can leverage the improving technology of depth sensors and embedded accelerators to enable higher-resolution, lower-latency processing for 3D scenes using depth-upsampling algorithms. This research demonstrates that filter-based upsampling algorithms are feasible for mixed-reality apps using low-power hardware accelerators. The authors parallelized and evaluated a depth-upsampling algorithm on two different devices: a reconfigurable-logic FPGA embedded within a low-power SoC; and a fixed-logic embedded graphics processing unit. We demonstrate that both accelerators can meet the real-time requirements of 11 ms latency for mixed-reality apps. 1


Sign in / Sign up

Export Citation Format

Share Document