scholarly journals Anode Effect Prediction in Hall-Héroult Cells Using Time Series Characteristics

2020 ◽  
Vol 10 (24) ◽  
pp. 9050
Author(s):  
Ron Kremser ◽  
Niclas Grabowski ◽  
Roman Düssel ◽  
Albert Mulder ◽  
Dietmar Tutsch

In aluminium production, anode effects occur when the alumina content in the bath is so low that normal fused salt electrolysis cannot be maintained. This is followed by a rapid increase of pot voltage from about 4.3 V to values in the range from 10 to 80 V. As a result of a local depletion of oxide ions, the cryolite decomposes and forms climate-relevant perfluorocarbon (PFC) gases. The high pot voltage also causes a high energy input, which dissipates as heat. In order to ensure energy-efficient and climate-friendly operation, it is important to predict anode effects in advance so that they can be prevented by prophylactic actions like alumina feeding or beam downward movements. In this paper a classification model is trained with aggregated time series data from TRIMET Aluminium SE Essen (TAE) that is able to predict anode effects at least 1 min in advance. Due to a high imbalance in the class distribution of normal state and labeled anode effect state as well as possible model’s weaknesses the final F1 score of 32.4% is comparatively low. Nevertheless, the prediction provides an indication of possible anode effects and the process control system may react on it. Consequent practical implications will be discussed.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3553
Author(s):  
Jeremy Watts ◽  
Anahita Khojandi ◽  
Rama Vasudevan ◽  
Fatta B. Nahab ◽  
Ritesh A. Ramdhani

Parkinson’s disease medication treatment planning is generally based on subjective data obtained through clinical, physician-patient interactions. The Personal KinetiGraph™ (PKG) and similar wearable sensors have shown promise in enabling objective, continuous remote health monitoring for Parkinson’s patients. In this proof-of-concept study, we propose to use objective sensor data from the PKG and apply machine learning to cluster patients based on levodopa regimens and response. The resulting clusters are then used to enhance treatment planning by providing improved initial treatment estimates to supplement a physician’s initial assessment. We apply k-means clustering to a dataset of within-subject Parkinson’s medication changes—clinically assessed by the MDS-Unified Parkinson’s Disease Rating Scale-III (MDS-UPDRS-III) and the PKG sensor for movement staging. A random forest classification model was then used to predict patients’ cluster allocation based on their respective demographic information, MDS-UPDRS-III scores, and PKG time-series data. Clinically relevant clusters were partitioned by levodopa dose, medication administration frequency, and total levodopa equivalent daily dose—with the PKG providing similar symptomatic assessments to physician MDS-UPDRS-III scores. A random forest classifier trained on demographic information, MDS-UPDRS-III scores, and PKG time-series data was able to accurately classify subjects of the two most demographically similar clusters with an accuracy of 86.9%, an F1 score of 90.7%, and an AUC of 0.871. A model that relied solely on demographic information and PKG time-series data provided the next best performance with an accuracy of 83.8%, an F1 score of 88.5%, and an AUC of 0.831, hence further enabling fully remote assessments. These computational methods demonstrate the feasibility of using sensor-based data to cluster patients based on their medication responses with further potential to assist with medication recommendations.



Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2812 ◽  
Author(s):  
Jing Yang ◽  
Yizhong Sun ◽  
Bowen Shang ◽  
Lei Wang ◽  
Jie Zhu

With the availability of large geospatial datasets, the study of collective human mobility spatiotemporal patterns provides a new way to explore urban spatial environments from the perspective of residents. In this paper, we constructed a classification model for mobility patterns that is suitable for taxi OD (Origin-Destination) point data, and it is comprised of three parts. First, a new aggregate unit, which uses a road intersection as the constraint condition, is designed for the analysis of the taxi OD point data. Second, the time series similarity measurement is improved by adding a normalization procedure and time windows to address the particular characteristics of the taxi time series data. Finally, the DBSCAN algorithm is used to classify the time series into different mobility patterns based on a proximity index that is calculated using the improved similarity measurement. In addition, we used the random forest algorithm to establish a correlation model between the mobility patterns and the regional functional characteristics. Based on the taxi OD point data from Nanjing, we delimited seven mobility patterns and illustrated that the regional functions have obvious driving effects on these mobility patterns. These findings are applicable to urban planning, traffic management and planning, and land use analyses in the future.



2020 ◽  
Vol 245 ◽  
pp. 07001
Author(s):  
Laura Sargsyan ◽  
Filipe Martins

Large experiments in high energy physics require efficient and scalable monitoring solutions to digest data of the detector control system. Plotting multiple graphs in the slow control system and extracting historical data for long time periods are resource intensive tasks. The proposed solution leverages the new virtualization, data analytics and visualization technologies such as InfluxDB time-series database for faster access large scale data, Grafana to visualize time-series data and an OpenShift container platform to automate build, deployment, and management of application. The monitoring service runs separately from the control system thus reduces a workload on the control system computing resources. As an example, a test version of the new monitoring was applied to the ATLAS Tile Calorimeter using the CERN Cloud Process as a Service platform. Many dashboards in Grafana have been created to monitor and analyse behaviour of the High Voltage distribution system. They visualize not only values measured by the control system, but also run information and analytics data (difference, deviation, etc.). The new monitoring with a feature-rich visualization, filtering possibilities and analytics tools allows to extend detector control and monitoring capabilities and can help experts working on large scale experiments.



2021 ◽  
Vol 14 (1) ◽  
pp. 140
Author(s):  
Johann Desloires ◽  
Dino Ienco ◽  
Antoine Botrel ◽  
Nicolas Ranc

Applications in which researchers aim to extract a single land type from remotely sensed data are quite common in practical scenarios: extract the urban footprint to make connections with socio-economic factors; map the forest extent to subsequently retrieve biophysical variables and detect a particular crop type to successively calibrate and deploy yield prediction models. In this scenario, the (positive) targeted class is well defined, while the negative class is difficult to describe. This one-class classification setting is also referred to as positive unlabelled learning (PUL) in the general field of machine learning. To deal with this challenging setting, when satellite image time series data are available, we propose a new framework named positive and unlabelled learning of satellite image time series (PUL-SITS). PUL-SITS involves two different stages: In the first one, a recurrent neural network autoencoder is trained to reconstruct only positive samples with the aim to higight reliable negative ones. In the second stage, both labelled and unlabelled samples are exploited in a semi-supervised manner to build the final binary classification model. To assess the quality of our approach, experiments were carried out on a real-world benchmark, namely Haute-Garonne, located in the southwest area of France. From this study site, we considered two different scenarios: a first one in which the process has the objective to map Cereals/Oilseeds cover versus the rest of the land cover classes and a second one in which the class of interest is the Forest land cover. The evaluation was carried out by comparing the proposed approach with recent competitors to deal with the considered positive and unlabelled learning scenarios.



2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Zhongguo Yang ◽  
Irshad Ahmed Abbasi ◽  
Fahad Algarni ◽  
Sikandar Ali ◽  
Mingzhu Zhang

Nowadays, an Internet of Things (IoT) device consists of algorithms, datasets, and models. Due to good performance of deep learning methods, many devices integrated well-trained models in them. IoT empowers users to communicate and control physical devices to achieve vital information. However, these models are vulnerable to adversarial attacks, which largely bring potential risks to the normal application of deep learning methods. For instance, very little changes even one point in the IoT time-series data could lead to unreliable or wrong decisions. Moreover, these changes could be deliberately generated by following an adversarial attack strategy. We propose a robust IoT data classification model based on an encode-decode joint training model. Furthermore, thermometer encoding is taken as a nonlinear transformation to the original training examples that are used to reconstruct original time series examples through the encode-decode model. The trained ResNet model based on reconstruction examples is more robust to the adversarial attack. Experiments show that the trained model can successfully resist to fast gradient sign method attack to some extent and improve the security of the time series data classification model.





2013 ◽  
Author(s):  
Stephen J. Tueller ◽  
Richard A. Van Dorn ◽  
Georgiy Bobashev ◽  
Barry Eggleston


Author(s):  
Rizki Rahma Kusumadewi ◽  
Wahyu Widayat

Exchange rate is one tool to measure a country’s economic conditions. The growth of a stable currency value indicates that the country has a relatively good economic conditions or stable. This study has the purpose to analyze the factors that affect the exchange rate of the Indonesian Rupiah against the United States Dollar in the period of 2000-2013. The data used in this study is a secondary data which are time series data, made up of exports, imports, inflation, the BI rate, Gross Domestic Product (GDP), and the money supply (M1) in the quarter base, from first quarter on 2000 to fourth quarter on 2013. Regression model time series data used the ARCH-GARCH with ARCH model selection indicates that the variables that significantly influence the exchange rate are exports, inflation, the central bank rate and the money supply (M1). Whereas import and GDP did not give any influence.



2016 ◽  
Vol 136 (3) ◽  
pp. 363-372
Author(s):  
Takaaki Nakamura ◽  
Makoto Imamura ◽  
Masashi Tatedoko ◽  
Norio Hirai


Sign in / Sign up

Export Citation Format

Share Document