scholarly journals Medical Applications of the GEMPix

2021 ◽  
Vol 11 (1) ◽  
pp. 440
Author(s):  
Johannes Leidner ◽  
Fabrizio Murtas ◽  
Marco Silari

The GEMPix is a small gaseous detector with a highly pixelated readout, consisting of a drift region, three Gas Electron Multipliers (GEMs) for signal amplification, and four Timepix ASICs with 55 µm pixel pitch and a total of 262,144 pixels. A continuous flow of a gas mixture such as Ar:CO2:CF4, Ar:CO2 or propane-based tissue equivalent gas is supplied externally at a rate of 5 L/h. This article reviews the medical applications of the GEMPix. These include relative dose measurements in conventional photon radiation therapy and in carbon ion beams, by which on-line 2D dose images provided a similar or better performance compared to gafchromic films. Depth scans in a water phantom with 12C ions allowed measuring the 3D energy deposition and reconstructing the Bragg curve of a pencil beam. Microdosimetric measurements performed in neutron and photon fields allowed comparing dose spectra with those from Tissue Equivalent Proportional Counters and, additionally, to obtain particle track images. Some preliminary measurements performed to check the capabilities as the detector in proton tomography are also illustrated. The most important on-going developments are: (1) a new, larger area readout to cover the typical maximum field size in radiation therapy of 20 × 20 cm2; (2) a sealed and low-pressure version to facilitate measurements and to increase the equivalent spatial resolution for microdosimetry; (3) 3D particle track reconstruction when operating the GEMPix as a Time Projection Chamber.

Author(s):  
Srilakshmi Prabhu ◽  
Dhanya Y. Bharadwaj ◽  
Rachaita Podder ◽  
S. G. Bubbly ◽  
S. B. Gudennavar

Particles ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 333-342
Author(s):  
Ignacio Lázaro Roche

Tomography based on cosmic muon absorption is a rising technique because of its versatility and its consolidation as a geophysics tool over the past decade. It allows us to address major societal issues such as long-term stability of natural and man-made large infrastructures or sustainable underwater management. Traditionally, muon trackers consist of hodoscopes or multilayer detectors. For applications with challenging available volumes or the wide field of view required, a thin time projection chamber (TPC) associated with a Micromegas readout plane can provide a good tradeoff between compactness and performance. This paper details the design of such a TPC aiming at maximizing primary signal and minimizing track reconstruction artifacts. The results of the measurements performed during a case study addressing the aforementioned applications are discussed. The current works lines and perspectives of the project are also presented.


2022 ◽  
Vol 12 (2) ◽  
pp. 600
Author(s):  
Serenella Russo ◽  
Silvia Bettarini ◽  
Barbara Grilli Leonulli ◽  
Marco Esposito ◽  
Paolo Alpi ◽  
...  

High-energy small electron beams, generated by linear accelerators, are used for radiotherapy of localized superficial tumours. The aim of the present study is to assess the dosimetric performance under small radiation therapy electron beams of the novel PTW microSilicon detector compared to other available dosimeters. Relative dose measurements of circular fields with 20, 30, 40, and 50 mm aperture diameters were performed for electron beams generated by an Elekta Synergy linac, with energy between 4 and 12 MeV. Percentage depth dose, transverse profiles, and output factors, normalized to the 10 × 10 cm2 reference field, were measured. All dosimetric data were collected in a PTW MP3 motorized water phantom, at SSD of 100 cm, by using the novel PTW microSilicon detector. The PTW diode E and the PTW microDiamond were also used in all beam apertures for benchmarking. Data for the biggest field size were also measured by the PTW Advanced Markus ionization chamber. Measurements performed by the microSilicon are in good agreement with the reference values for all the tubular applicators and beam energies within the stated uncertainties. This confirms the reliability of the microSilicon detector for relative dosimetry of small radiation therapy electron beams collimated by circular applicators.


Instruments ◽  
2020 ◽  
Vol 4 (1) ◽  
pp. 9 ◽  
Author(s):  
Jonathan Asaadi ◽  
Martin Auger ◽  
Antonio Ereditato ◽  
Damian Goeldi ◽  
Umut Kose ◽  
...  

Traditional charge readout technologies of single-phase Liquid Argon Time projection Chambers (LArTPCs) based on projective wire readout introduce intrinsic ambiguities in event reconstruction. Combined with the slow response inherent in LArTPC detectors, reconstruction ambiguities have limited their performance, until now. Here, we present a proof of principle of a pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterize the signal-to-noise ratio of charge readout chain to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for high-multiplicity environments.


2019 ◽  
Vol 214 ◽  
pp. 01050 ◽  
Author(s):  
David Rohr ◽  
Sergey Gorbunov ◽  
Schmidt Ole Marten ◽  
Ruben Shahoyan

In LHC Run 3, ALICE will increase the data taking rate significantly to 50 kHz continuous read-out of minimum bias Pb—Pb collisions. The reconstruction strategy of the online-offline computing upgrade foresees a first synchronous online reconstruction stage during data taking enabling detector calibration and data compression, and a posterior calibrated asynchronous reconstruction stage. Many new challenges arise, among them continuous TPC read-out, more overlapping collisions, no a priori knowledge of the primary vertex and of location-dependent calibration in the synchronous phase, identification of low-momentum looping tracks, and sophisticated raw data compression. The tracking algorithm for the Time Projection Chamber (TPC) will be based on a Cellular Automaton and the Kalman filter. The reconstruction shall run online, processing 50 times more collisions per second than today, while yielding results comparable to current offline reconstruction. Our TPC track finding leverages the potential of hardware accelerators via the OpenCL and CUDA APIs in a shared source code for CPUs and GPUs for both reconstruction stages. We give an overview of the status of Run 3 tracking including performance on processors and GPUs and achieved compression ratios.


2012 ◽  
Vol 82 (1) ◽  
pp. 242-249 ◽  
Author(s):  
Charles B. Simone ◽  
Kevin Kramer ◽  
William P. O’Meara ◽  
Justin E. Bekelman ◽  
Arnaud Belard ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Magdalena Witkowska ◽  
Agata Majchrzak ◽  
Piotr Smolewski

Currently, Hodgkin’s lymphoma (HL) has an excellent clinical outcome, with overall survival of approximately 90% in early stages of the disease. Based on young age of the majority of patients at the time of diagnosis and their long survival time, increased attention has been focused on long-term toxicity of therapy. While novel, directly targeting antitumor agents, with an excellent safety profile, have been developed for HL treatment, the role of radiotherapy is still debated. Radiotherapy may induce cardiovascular disease and impairment of thyroid or pulmonary function and, most importantly, may lead to development of secondary cancers. As a consequence, the current radiation therapy planning paradigm is mainly focused on a reduction of field size. As it was investigated in clinical trials regional therapy is as effective as extended field radiotherapy, but less toxic. Although chemotherapy is the mainstay of HL treatment, consolidative involved field radiation therapy is still considered to be the standard of care in both early and advanced stages. Recently, further field reduction has been investigated to further decrease the late radiation-induced toxicity. In this paper we describe the role and safety profile of radiotherapy in the past and present and hope for the novel techniques in the future.


2016 ◽  
Vol 16 (1) ◽  
pp. 45-56 ◽  
Author(s):  
Sunil Sharma ◽  
Ganesh Narayanasamy ◽  
Beata Przybyla ◽  
Jessica Webber ◽  
Marjan Boerma ◽  
...  

We have developed a small animal conformal radiation therapy device that provides a degree of geometrical/anatomical targeting comparable to what is achievable in a commercial animal irradiator. small animal conformal radiation therapy device is capable of producing precise and accurate conformal delivery of radiation to target as well as for imaging small animals. The small animal conformal radiation therapy device uses an X-ray tube, a robotic animal position system, and a digital imager. The system is in a steel enclosure with adequate lead shielding following National Council on Radiation Protection and Measurements 49 guidelines and verified with Geiger-Mueller survey meter. The X-ray source is calibrated following AAPM TG-61 specifications and mounted at 101.6 cm from the floor, which is a primary barrier. The X-ray tube is mounted on a custom-made “gantry” and has a special collimating assembly system that allows field size between 0.5 mm and 20 cm at isocenter. Three-dimensional imaging can be performed to aid target localization using the same X-ray source at custom settings and an in-house reconstruction software. The small animal conformal radiation therapy device thus provides an excellent integrated system to promote translational research in radiation oncology in an academic laboratory. The purpose of this article is to review shielding and dosimetric measurement and highlight a few successful studies that have been performed to date with our system. In addition, an example of new data from an in vivo rat model of breast cancer is presented in which spatially fractionated radiation alone and in combination with thermal ablation was applied and the therapeutic benefit examined.


Sign in / Sign up

Export Citation Format

Share Document