scholarly journals PHOTO-DEGRADATION OF 5 – FLUOROURACIL. COMPARATIVE STUDY ON THE EFFICIENCIES OF UV/H2O2, UV/TIO2, UV/H2O2/TIO2 PROCESSES

2019 ◽  
Vol 1 (1) ◽  
pp. 11-15
Author(s):  
Mirela Alina Constantin ◽  
Lucian Alexandru Constantin ◽  
Ines Nitoi ◽  
Ionut Cristea ◽  
Ellea Boulac

Degradation experiments on 5-Fluorouracil synthetic solutions were performed using three types of advanced oxidation systems: UV/H2O2, UV/TiO2 and UV/H2O2/TiO2. Optimum parameters for all three systems were established and 5-Fluorouracil degradation efficiencies were calculated, for all systems being more than 97%. The results showed that the combined UV/H2O2/TiO2 system is offering shortest irradiation time, the possibility to recover and reuse the photo catalyst as well as the possibility to use solar radiation. Obtained results proved also that advanced oxidation processes represent a viable option for degradation of hazardous pollutants that cannot be removed properly via conventional wastewater treatment processes.

2017 ◽  
pp. 147
Author(s):  
Naser Jamshidi ◽  
Farzad Nezhad Bahadori ◽  
Ladan Talebiazar ◽  
Ali Akbar Azimi

Today, advanced oxidation processes (AOPs) is considered as a key and effective method for environment preservation from pollutions. In this study , advanced photochemical oxidation processes using O3/H2O2 and O3/H2O2/UV systems were investigated batch photolytic reactor in lab-scale for the degradation of bisphenol A (BPA). In ozone generator source, air, as of the initial instrument feed, changes to ozone after electrical action and reaction. The UV irradiation source was a medium-pressure mercury lamp 300 W that was immerse in the wastewater solution with in 1.5 liter volume reactor. The reaction was influenced by the pH, the input concentration of H2O2, the input concentration of BPA, ozone dosage, chemical oxidation demand (COD) and UV irradiation time. Results showed that at initial bisphenol A concentration of 100 mg/l will completely degrade after 60 minutes by using O3/H2O2 in the pH range from 9.8 to 10 and by adding UV, it will happen in less than 36 minutes in the pH range of 3 to 10. The O3/H2O2/UV process reduced COD to 75 percents.


Author(s):  
Nurazim Ibrahim ◽  
Sharifah Farah Fariza Syed Zainal ◽  
Hamidi Abdul Aziz

The presence of hazardous micropollutants in water and wastewater is one of the main concerns in water management system. This micropollutant exists in a low concentration, but there are possible hazards to humans and organisms living in the water. Moreover, its character that is recalcitrant to microbiological degradation makes it difficult to deal with. Advanced oxidation processes (AOPs) are efficient methods to remove low concentration micropollutants. AOPs are a set of processes consisting the production of very reactive oxygen species which able to destroy a wide range of organic compounds. The main principal mechanism in UV-based radical AOP treatment processes is the use ultraviolet light to initiate generation of hydroxyl radicals used to destroy persistent organic pollutants. Therefore, this chapter presents an overview on the principle of radical oxidant species generation and degradation mechanism by various type of UV based AOP in treating contaminants present in water and wastewater. The current application and possible improvement of the technology is also presented in this chapter.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2811
Author(s):  
Dheaya Alrousan ◽  
Arsalan Afkhami ◽  
Khalid Bani-Melhem ◽  
Patrick Dunlop

In keeping with the circular economy approach, reclaiming greywater (GW) is considered a sustainable approach to local reuse of wastewater and a viable option to reduce household demand for freshwater. This study investigated the mineralization of total organic carbon (TOC) in GW using TiO2-based advanced oxidation processes (AOPs) in a custom-built stirred tank reactor. The combinations of H2O2, O3, and immobilized TiO2 under either dark or UVA irradiation conditions were systematically evaluated—namely TiO2/dark, O3/dark (ozonation), H2O2/dark (peroxidation), TiO2/UVA (photocatalysis), O3/UVA (Ozone photolysis), H2O2/UVA (photo-peroxidation), O3/TiO2/dark (catalytic ozonation), O3/TiO2/UVA (photocatalytic ozonation), H2O2/TiO2/dark, H2O2/TiO2/UVA, H2O2/O3/dark (peroxonation), H2O2/O3/UVA (photo-peroxonation), H2O2/O3/TiO2/dark (catalytic peroxonation), and H2O2/O3/TiO2/UVA (photocatalytic peroxonation). It was found that combining different treatment methods with UVA irradiation dramatically enhanced the organic mineralization efficiency. The optimum TiO2 loading in this study was observed to be 0.96 mg/cm2 with the highest TOC removal (54%) achieved using photocatalytic peroxonation under optimal conditions (0.96 mg TiO2/cm2, 25 mg O3/min, and 0.7 H2O2/O3 molar ratio). In peroxonation and photo-peroxonation, the optimal H2O2/O3 molar ratio was identified to be a critical efficiency parameter maximizing the production of reactive radical species. Increasing ozone flow rate or H2O2 dosage was observed to cause an efficiency inhibition effect. This lab-based study demonstrates the potential for combined TiO2-AOP treatments to significantly reduce the organic fraction of real GW, offering potential for the development of low-cost systems permitting safe GW reuse.


2019 ◽  
Vol 17 (2) ◽  
pp. 254-265 ◽  
Author(s):  
A. Derbalah ◽  
M. Sunday ◽  
R. Chidya ◽  
W. Jadoon ◽  
H. Sakugawa

Abstract In this study, the kinetics of photocatalytic removal of imidacloprid, a systemic chloronicotinoid insecticide, from water using two advanced oxidation systems (ZnO(normal)/H2O2/artificial sunlight and ZnO(nano)/H2O2/artificial sunlight) were investigated. Moreover, the effects of pH, insecticide concentration, catalyst concentration, catalyst particle size, and water type on the photocatalytic removal of imidacloprid were evaluated. Furthermore, total mineralization of imidacloprid under these advanced oxidation systems was evaluated by monitoring the decreases in dissolved organic carbon (DOC) concentrations and formation rate of inorganic ions (Cl− and NO2−) with irradiation time using total organic carbon (TOC) analysis and ion chromatography to confirm the complete detoxification of imidacloprid in water. The degradation rate of imidacloprid was faster under the ZnO(nano)/H2O2/artificial sunlight system than the ZnO(normal)/artificial sunlight system in both pure and river water. The photocatalytic degradation of imidacloprid under both advanced oxidation systems was affected by pH, catalyst concentration, imidacloprid concentration, and water type. Almost complete mineralization of imidacloprid was only achieved in the ZnO(nano)/H2O2/artificial sunlight oxidation system. The photogeneration rate of hydroxyl radicals was higher under the ZnO(nano)/H2O2/artificial sunlight system than the ZnO(normal)/H2O2/artificial sunlight system. Advanced oxidation processes, particularly those using nanosized zinc oxide, can be regarded as an effective photocatalytic method for imidacloprid removal from water.


2020 ◽  
Vol 2 (1) ◽  
pp. 4-10
Author(s):  
Lucian Alexandru Constantin ◽  
Mirela Alina Constantin ◽  
Ines Nitoi ◽  
Toma Galaon ◽  
Valeriu Robert Badescu ◽  
...  

Synthetic solutions of flutamide were subject to degradation using three advanced oxidation systems, namely UV/TiO2, UV/H2O2 and UV/H2O2/TiO2. Optimum conditions and degradation kinetics has been established for all three systems. The experimental results showed that all three systems can be successfully used for flutamide degradation with efficiencies higher than 99% and that advanced oxidation processes are showing good potential for degradation of organic pollutants that cannot be suitable removed/degraded using conventional wastewater treatment processes.


Author(s):  
S. Chitra ◽  
K. Paramasivan ◽  
P. K. Sinha ◽  
K. B. Lai

AbstractEthylenediaminetetraacetic acid (EDTA) is a chelating agent that has been used for decontamination purposes in nuclear industry. The presence of EDTA in decontamination wastes can cause complexation of the cations resulting into interferences in their removal by various treatment processes such as chemical pre­cipitation, ion exchange etc. Further, it might also impart elevated leachability and higher mobility of cationic contaminants from the conditioned wastes i.e. waste immobilized in cement or other matrices and can negatively influence the quality of the final form of waste. Advanced Oxidation Processes (AOP) using ozone, H


2017 ◽  
Vol 19 (3) ◽  
pp. 396-411 ◽  

The objective of this study is to summarize studies and investigations about advanced oxidation processes (AOPs) used for the treatment of petroleum wastewater, which mainly contained oil, organic matter and other compounds. The big difference was shown in the specification of wastewater among the investigated studies and a wide variety of pollutants at varying concentrations. The most compounds in petroleum wastewater were the mixture of hydrocarbons and inorganic compounds. Advanced oxidation processes (AOPs) have a capability of rapid degradation of recalcitrant pollutants in the aquatic environment. However, the literature regarding petroleum wastewater treatment is very little and advanced oxidation processes (AOPs) are still not being used on an industrial scale in oil refineries. Most studies were focused on the degradation of some pollutants found in the petroleum wastewater such as sulphides, ammonia, phenols and organic materials. This review focused on works that investigated advanced oxidation processes (AOPs) by monitoring general petroleum wastewater parameters such as TOC, COD, BOD, oil, and phenols. It presented an overview of photocatalytic degradation of pollutants in petroleum wastewater and highlighted the basics of these processes including the optimum parameters.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5748
Author(s):  
Daqing Jia ◽  
Khalil Hanna ◽  
Gilles Mailhot ◽  
Marcello Brigante

The key role of trivalent manganese (Mn(III)) species in promoting sulfate radical-based advanced oxidation processes (SR-AOPs) has recently attracted increasing attention. This review provides a comprehensive summary of Mn(III) (oxyhydr)oxide-based catalysts used to activate peroxymonosulfate (PMS) and peroxydisulfate (PDS) in water. The crystal structures of different Mn(III) (oxyhydr)oxides (such as α-Mn2O3, γ-MnOOH, and Mn3O4) are first introduced. Then the impact of the catalyst structure and composition on the activation mechanisms are discussed, as well as the effects of solution pH and inorganic ions. In the Mn(III) (oxyhydr)oxide activated SR-AOPs systems, the activation mechanisms of PMS and PDS are different. For example, both radical (such as sulfate and hydroxyl radical) and non-radical (singlet oxygen) were generated by Mn(III) (oxyhydr)oxide activated PMS. In comparison, the activation of PDS by α-Mn2O3 and γ-MnOOH preferred to form the singlet oxygen and catalyst surface activated complex to remove the organic pollutants. Finally, research gaps are discussed to suggest future directions in context of applying radical-based advanced oxidation in wastewater treatment processes.


2021 ◽  
Vol 11 (3) ◽  
pp. 1042
Author(s):  
Danilo Russo

With the increasing number of recalcitrant pollutants in wastewater treatment plants, there will be a stringent need for rapid and convenient development of tertiary treatment processes such as advanced oxidation processes (AOPs). Microreactors offer a great opportunity for ultrafast and safe intrinsic kinetic parameters determination, by-products identification, and ecotoxicity assessment. Despite the considerable potential of these devices, they have been mostly used for catalyst screening or pseudo-first order kinetics determination, not allowing for knowledge transfer across scales. This work offers an overview of the adoption of micro- and photo-microreactors for intrinsic kinetics investigations in the field of AOPs to guide future research efforts.


Author(s):  
Kai-Xin Zhang ◽  
Chao Song ◽  
Shan Zhao ◽  
Zhen Yan ◽  
Li-Juan Feng ◽  
...  

Wastewater treatment plants are suspected to be significant point sources of microplastic and nanoplastic particles (NPs) into the environment. As one of the main wastewater treatment processes, advanced oxidation processes...


Sign in / Sign up

Export Citation Format

Share Document