scholarly journals Design and Validation of Disturbance Rejection Dynamic Inverse Control for a Tailless Aircraft in Wind Tunnel

2021 ◽  
Vol 11 (4) ◽  
pp. 1407
Author(s):  
Bowen Nie ◽  
Zhitao Liu ◽  
Tianhao Guo ◽  
Litao Fan ◽  
Hongxu Ma ◽  
...  

This paper focuses on the design of a disturbance rejection controller for a tailless aircraft based on the technique of nonlinear dynamic inversion (NDI). The tailless aircraft model mounted on a three degree-of-freedom (3-DOF) dynamic rig in the wind tunnel is modeled as a nonlinear affine system subject to mismatched disturbances. First of all, a baseline NDI attitude controller is designed for sufficient stability and good reference tracking performance of the nominal system. Then, a nonlinear disturbance observer (NDO) is supplemented to the baseline NDI controller to estimate the lumped disturbances for compensation, including unmodeled dynamics, parameter uncertainties, and external disturbances. Mathematical analysis demonstrates the convergence of the employed NDO and the resulting closed-loop system. Furthermore, an anti-windup modification is applied to the NDO for control performance preserving in the presence of actuator saturation. Subsequently, the designed control schemes are preliminarily validated and compared via simulations. The baseline NDI controller demonstrates satisfactory attitude tracking performance in the case of nominal simulation; the NDO augmented NDI controller presents significantly improved ability of disturbance rejection when compared with the baseline NDI controller in the case of robust simulation; the anti-windup modified scheme, rather than the baseline NDI controller nor the NDO augmented NDI controller, can preserve the closed-loop performance in the case of actuator saturation. Finally, the baseline NDI scheme and the NDO augmented NDI scheme are implemented and further validated in the wind tunnel flight tests, which demonstrate that the experimental results are in good agreement with that of the simulations.

2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Xing Fang ◽  
Yujia Shang

A novel continuous sliding mode control (CSMC) strategy based on the finite-time disturbance observer (FTDO) is proposed for the small-scale unmanned helicopters in the presence of both matched and mismatched disturbances. First, a novel sliding surface is designed based on the estimates of the mismatched disturbances and their derivatives obtained by the FTDO. Then, a continuous sliding mode control law is developed, which does not lead to any chattering phenomenon. Furthermore, the closed-loop helicopter system is proved to be asymptotically stable. Finally, the excellent hovering and tracking performance, as well as the powerful disturbance rejection capability of the proposed novel CSMC method, is validated by the simulation results.


Author(s):  
Mohammed Ali ◽  
Charles K. Alexander

The tracking performance of a robot manipulator is controlled using nonlinear active disturbance rejection control (ADRC). The proposed method does not require the complete knowledge of the plant’s parameters, and external disturbances since it is based on the rejection and estimation of the unknown internal dynamics and external disturbances. The proposed method is simple and has minimal tuning parameters. The robustness of the proposed method is discussed against parameter uncertainties and disturbances. First, the mathematical model of the manipulator is developed. ADRC theory is explained. The manipulator is represented in ADRC form. ADRC’s tracking performance for the joints and end-effector is compared to the tracking performance of the robust passivity (RP) control. The simulations prove that the proposed control method achieves good tracking performance compared to RP control. It is shown that ADRC has a lower energy consumption compared to RP control by calculating the power in the input signals.


2013 ◽  
Vol 20 (2) ◽  
pp. 297-308 ◽  
Author(s):  
Y.C. Ding ◽  
F.L. Weng ◽  
Z.A. Yu

The problem of robustly active vibration control for a class of earthquake-excited structural systems with time-delay and saturation in the control input channel and parameter uncertainties appearing in all the mass, damping and stiffness matrices is concerned in this paper. The objective of the designing controllers is to guarantee the robust stability of the closed-loop system and attenuate the disturbance from earthquake excitation. Firstly, by using the linear combination of some matrices to deal with the system's uncertainties, a new system uncertainties description, namely rank-1 uncertainty description, is presented. Then, by introducing a linear varying parameter, the input saturation model is described as a linear parameter varying model. Furthermore, based on parameter-dependent Lyapunov theory and linear matrix inequality (LMI) technique, the LMIs-based conditions for the closed-loop system to be stable are deduced. By solving those conditions, the controller, considering the actuator saturation, input delay and parameters uncertainties, is obtained. Finally, a three-storey linear building structure under earthquake excitation is considered and simulation results are given to show the effectiveness of the proposed controllers.


2021 ◽  
Vol 11 (13) ◽  
pp. 5960
Author(s):  
José Fermi Guerrero-Castellanos ◽  
Sylvain Durand ◽  
German Ardul Munoz-Hernandez ◽  
Nicolas Marchand ◽  
Lorenzo L. González Romeo ◽  
...  

This paper addresses an attitude tracking control design applied to multirotor unmanned aerial vehicles (UAVs) based on an ADRC approach. The proposed technique groups the endogenous and exogenous disturbances into a total disturbance, and then this is estimated online via an extended state observer (ESO). Further, a quaternion-based feedback is developed, which is assisted by a feedforward term obtained via the ESO to relieve the total disturbance actively. The control law is bounded; consequently, it takes into account the maximum capabilities of the actuators to reject the disturbances. The stability is analyzed in the ISS framework, guaranteeing that the closed loop (controller-ESO-UAV) is robustly stable. The simulation results allow validation of the theoretical features.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 20
Author(s):  
Manh Hung Nguyen ◽  
Hoang Vu Dao ◽  
Kyoung Kwan Ahn

In this paper, an active disturbance rejection control is designed to improve the position tracking performance of an electro-hydraulic actuation system in the presence of parametric uncertainties, non-parametric uncertainties, and external disturbances as well. The disturbance observers (Dos) are proposed to estimate not only the matched lumped uncertainties but also mismatched disturbance. Without the velocity measurement, the unmeasurable angular velocity is robustly calculated based on the high-order Levant’s exact differentiator. These disturbances and angular velocity are integrated into the control design system based on the backstepping framework which guarantees high-accuracy tracking performance. The system stability analysis is analyzed by using the Lyapunov theory. Simulations based on an electro-hydraulic rotary actuator are conducted to verify the effectiveness of the proposed control method.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


2013 ◽  
Vol 467 ◽  
pp. 621-626
Author(s):  
Chen Fang ◽  
Jiang Hong Shi ◽  
Kun Yu Li ◽  
Zheng Wang

For a class of uncertain generalized discrete linear system with norm-bounded parameter uncertainties, the state feedback robust control problem is studied. One sufficient condition for the solvability of the problem and the state feedback robust controller are obtained in terms of linear matrix inequalities. The designed controller guarantees that the closed-loop systems is regular, causal, stable and satisfies a prescribed norm bounded constraint for all admissible uncertain parameters under some conditions. The result of the normal discrete system can be regarded as a particular form of our conclusion. A simulation example is given to demonstrate the effectiveness of the proposed method.


Author(s):  
Maia R. Bageant ◽  
David E. Hardt

Microfluidic technologies hold a great deal of promise in advancing the medical field, but transitioning them from research to commercial production has proven problematic. We propose precision hot embossing as a process to produce high volumes of devices with low capital cost and a high degree of flexibility. Hot embossing has not been widely applied to precision forming of hard polymers at viable production rates. To this end we have developed experimental equipment capable of maintaining the necessary precision in forming parameters while minimizing cycle time. In addition, since equipment precision alone does not guarantee consistent product quality, our work also focuses on real-time sensing and diagnosis of the process. This paper covers both the basic details for a novel embossing machine, and the utilization of the force and displacement data acquired during the embossing cycle to diagnose the state of the material and process. The precision necessary in both the forming machine and the instrumentation will be covered in detail. It will be shown that variation in the material properties (e.g. thickness, glass transition temperature) as well as the degree of bulk deformation of the substrate can be detected from these measurements. If these data are correlated with subsequent downstream functional tests, a total measure of quality may be determined and used to apply closed-loop cycle-to-cycle control to the entire process. By incorporating automation and specialized precision equipment into a tabletop “microfactory” setting, we aim to demonstrate a high degree of process control and disturbance rejection for the process of hot embossing as applied at the micron scale.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aws Abdulsalam Najm ◽  
Ibraheem Kasim Ibraheem ◽  
Amjad J. Humaidi ◽  
Ahmad Taher Azar

PurposeThe hybrid control system of the nonlinear PID (NLPID) controller and improved active disturbance rejection control (IADRC) are proposed for stabilization purposes for a 6-degree freedom (DoF) quadrotor system with the existence of exogenous disturbances and system uncertainties.Design/methodology/approachIADRC units are designed for the altitude and attitude systems, while NLPID controllers are designed for the x−y position system on the quadrotor nonlinear model. The proposed controlling scheme is implemented using MATLAB/Simulink environment and is compared with the traditional PID controller and NLPID controller.FindingsDifferent tests have been done, such as step reference tracking, hovering mode, trajectory tracking, exogenous disturbances and system uncertainties. The simulation results showed the demonstrated performance and stability gained by using the proposed scheme as compared with the other two controllers, even when the system was exposed to different disturbances and uncertainties.Originality/valueThe study proposes an NLPID-IADRC scheme to stabilize the motion of the quadrotor system while tracking a specified trajectory in the presence of exogenous disturbances and parameter uncertainties. The proposed multi-objective Output Performance Index (OPI) was used to obtain the optimum integrated time of the absolute error for each subsystem, UAV quadrotor system energy consumption and for minimizing the chattering phenomenon by adding the integrated time absolute of the control signals.


Sign in / Sign up

Export Citation Format

Share Document