scholarly journals Mechanism of Overlying Strata Structure Instability during Mining below Unconsolidated Confined Aquifer and Disaster Prevention

2021 ◽  
Vol 11 (4) ◽  
pp. 1778
Author(s):  
Xiaozhen Wang ◽  
Weibing Zhu ◽  
Jialin Xu ◽  
Hongkai Han ◽  
Xiang Fu

There is a layer of the unconsolidated confined aquifer (UCA) made of non-cemented sand and grit on the bed of Quaternary thick topsoil in many coal mines in east and north China. Existing on the bedrock of coal measures, it poses a serious threat to coal mine safety. Worse, it caused many supports crushing and water inrush disasters (SCWIDs) and resulted in significant economic losses. Aiming at the above problems, this paper adopts a simulation experiment, field measurement, engineering detection, and theoretical analysis to conduct the research. The research reveals the overburden’s destructive rules during mining under UCA. The results indicate that UCA plays an important role in the process of load transfer due to its mobility and replenishment in time. When mining close to the aquifer, the load transfer of aquifer leads to overburden breaking entirely and sliding instability of the bond-beam structure, then, the water flowing fractured zone develops rapidly and connects the aquifer, which is the fundamental reason for SCWID under the UCA. Based on the mechanism of SCWID, a prediction method of support crushing and water inrush hazard zones was put forward. Artificial pre-split blasting based on the location of a key stratum was applied to prevent SCWID. The proposed methods have been used in 7131 working face and safe mining was achieved.

2019 ◽  
Vol 16 (5) ◽  
pp. 913-925
Author(s):  
Jianlin Xie ◽  
Jialin Xu

Abstract Existing studies mostly focus on the stress change of coal in front of a goaf, but rarely conduct field monitoring on the internal pressure of a goaf, primarily due to the complex environment and other restrictive conditions of goafs. This paper first used physical simulation to monitor and analyze the internal pressure of goaf and found that goaf pressure presented a stepwise growth with the key stratum breaking. In addition, field measurements were conducted to monitor the goaf pressures of two different working faces. Goaf pressures both presented linear growth with the advance of the working face. According to comparative analysis, there were some differences between the two monitoring methods in terms of the corresponding relationship. This reflects that in the actual rock mass, after the breaking of a key stratum, the loads of the strata under its control are not transferred to the goaf instantaneously and load transfer characteristics are probably related to roof separation distribution characteristics of overlying strata, the bulking characteristics of caved rock mass, lateral stress limitation and other factors. The results of this study will offer some guidance for studies on the movement laws of overlying strata and the load transfer of overlying strata above goafs.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Lingzhi Sun ◽  
Yunyue Xie ◽  
Hongtian Xiao

This paper predicts the possibility of water inrush from a confined aquifer under the action of mining activities and water pressure. The study uses numerical analyses to evaluate stress redistribution and crack growth which result from coal extraction operations. Two models are presented in this study. By simplifying the distribution of the disturbed vertical stress on the coal seam and floor around a working face, a model is established to analyze the additional stresses in the floor strata induced by mining activities. And some distribution features of all the additional stress components are described. By using the superposition principle in fracture mechanics, another model is developed to analyze the crack growth in the floor strata under the action of disturbed stresses and water pressure. And the stress intensity factors at the crack tip are presented and the process of crack growth is obtained in the advancement of a working face. Because of discretizing only loading areas and crack surfaces, the present methods can obtain the accurate numerical results. Finally, some suggestions are made for preventing the water inrush from a confined aquifer.


2012 ◽  
Vol 518-523 ◽  
pp. 4283-4287 ◽  
Author(s):  
Pu Shan Li ◽  
Li Li A ◽  
Xin Yi Wang

To solve water disasters of coal seam bottom in the 8th coal mine, with the analysis on the bottom aquifer characteristics, the water inrush coefficient method was applied to evaluate the dangers of the aquifer floor and to the dangers division of water inrush. In combination with the karst fracture development conditions of the aquifer, we designed the water prevention and control plan of the limestone water under the seam floor. All the schemes set the basis for the mine safety production.


2021 ◽  
Author(s):  
Zhang ye ◽  
Tang Shoufeng ◽  
Shi Ke

Abstract To provide an effective risk assessment of water inrush for coal mine safety production, a BP neural network prediction method for water inrush based on principal component analysis and deep confidence network optimization was proposed. Because deep belief network (DBN) is disadvantaged by a long training time when establishing a high-dimensional data classification model, the principal component analysis (PCA) method is used to reduce the dimensionality of many factors affecting the water inrush of the coal seam floor, thus reducing the number of variables of the research object, redundancy and the difficulty of feature extraction and shortening the training time of the model. Then, a DBN network was used to extract secondary features from the processed nonlinear data, and a more abstract high-level representation was formed by combining low-level features to find the expression of the nonlinear relationship between the characteristics of water inbursts. Finally, a prediction model was established to predict the water inrush in coal mines. The superiority of this method was verified by comparing the prediction of the actual working face with the actual situation in typical mining areas of North China.


2021 ◽  
Vol 261 ◽  
pp. 03003
Author(s):  
Qin Ke ◽  
Peng Dong ◽  
Duan Huijun

two roadways in adjacent working face of Baode Mine may have the risk of water inrush at the same time, so it is necessary to construct long borehole to cover the roadway excavation. On the basis of the hydrogeological conditions of the mine, the safe water insulation thickness and water inrush coefficient of coal seam No .8 are calculated. The results show that the water inrush coefficient is 0.035-0.037 MPa/m, which is less than the critical value 0.06 MPa/m and the bottom plate has no sudden water hazard. In the construction of No .10 coal seam, the directional long borehole is used to detect whether there is a hidden structure communicating with the floor limestone and to drain water. The test shows that there is no effluent phenomenon in the borehole, which proves that there is no hidden structure in No .10 coal seam.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jie Fang ◽  
Lei Tian ◽  
Yanyan Cai ◽  
Zhiguo Cao ◽  
Jinhao Wen ◽  
...  

The water inrush of a working face is the main hidden danger to the safe mining of underwater coal seams. It is known that the development of water-flowing fractured zones in overlying strata is the basic path which causes water inrushes in working faces. In the engineering background of the underwater mining in the Longkou Mining Area, the analysis model and judgment method of crack propagation were created on the basis of the Mohr–Coulomb criterion. Fish language was used to couple the extension model into the FLAC3d software, in order to simulate the mining process of the underwater coal seam, as well as to analyze the initiation evolutionary characteristics and seepage laws of the fractured zones in the overlying strata during the advancing processes of the working face. The results showed that, during the coal seam mining process, the mining fractured zones which had been caused by the compression-shear and tension-shear were mainly concentrated in the overlying strata of the working face. Also, the open-off cut and mining working face were the key sections of the water inrush in the rock mass. The condition of the water disaster was the formation of a water inrush channel. The possible water inrush channels in underwater coal mining are mainly composed of water-flowing fractured zones which are formed during the excavation processes. The numerical simulation results were validated through the practical engineering of field observations on the height of water-flowing fractured zone, which displayed a favorable adaptability.


Sign in / Sign up

Export Citation Format

Share Document