scholarly journals Locomotion of Self-Excited Vibrating and Rotating Objects in Granular Environments

2021 ◽  
Vol 11 (5) ◽  
pp. 2054
Author(s):  
Ping Liu ◽  
Xianwen Ran ◽  
Qi Cheng ◽  
Wenhui Tang ◽  
Jingyuan Zhou ◽  
...  

Many reptiles, known as ‘sand swimmers’, adapt to their specific environments by vibrating or rotating their body. To understand these type of interactions of active objects with granular media, we study a simplified model of a self-excited spherical object (SO) immersed in the granular bed, using three-dimensional discrete element method (DEM) simulations. Modelling the vibration by an oscillatory motion, we simulate the longitudinal locomotion of the SO in three modes: transverse vibration, rotation around different axes, and a combination of both. We find that the mode of oscillation in y direction coupled with rotation around x-axis is optimal in the sense that the SO rises fastest, with periodic oscillations, in the z direction while remaining stable at the initial x position. We analyze the physical mechanisms governing the meandering up or down and show that the large oscillations are caused by an asynchronous changes between the directions of oscillation and rotation. We also observed that the SO’s rising rate is sensitive to three parameters: the oscillation amplitude, the oscillation frequency, f, and the rotation angular velocity, Ω. We report the following results. 1. When the frequencies of the rotation and transverse motion are synchronised, SO rises when Ω<0 and sinks when Ω>0; the average rising/sinking rate is proportional to |Ω|. 2. The rising rate increases linearly with the oscillation amplitude. 3. There exists a critical oscillation frequency, above and below which the rising mechanisms are different. Our study reveals the range of parameters that idealized ‘swimmers’ need to use to optimize performance in granular environments.

1998 ◽  
Vol 120 (4) ◽  
pp. 840-857 ◽  
Author(s):  
M. P. Dyko ◽  
K. Vafai

A heightened awareness of the importance of natural convective cooling as a driving factor in design and thermal management of aircraft braking systems has emerged in recent years. As a result, increased attention is being devoted to understanding the buoyancy-driven flow and heat transfer occurring within the complex air passageways formed by the wheel and brake components, including the interaction of the internal and external flow fields. Through application of contemporary computational methods in conjunction with thorough experimentation, robust numerical simulations of these three-dimensional processes have been developed and validated. This has provided insight into the fundamental physical mechanisms underlying the flow and yielded the tools necessary for efficient optimization of the cooling process to improve overall thermal performance. In the present work, a brief overview of aircraft brake thermal considerations and formulation of the convection cooling problem are provided. This is followed by a review of studies of natural convection within closed and open-ended annuli and the closely related investigation of inboard and outboard subdomains of the braking system. Relevant studies of natural convection in open rectangular cavities are also discussed. Both experimental and numerical results obtained to date are addressed, with emphasis given to the characteristics of the flow field and the effects of changes in geometric parameters on flow and heat transfer. Findings of a concurrent numerical and experimental investigation of natural convection within the wheel and brake assembly are presented. These results provide, for the first time, a description of the three-dimensional aircraft braking system cooling flow field.


2021 ◽  
Vol 7 (7) ◽  
pp. eabd2711
Author(s):  
Jean-François Louf ◽  
Nancy B. Lu ◽  
Margaret G. O’Connell ◽  
H. Jeremy Cho ◽  
Sujit S. Datta

Hydrogels hold promise in agriculture as reservoirs of water in dry soil, potentially alleviating the burden of irrigation. However, confinement in soil can markedly reduce the ability of hydrogels to absorb water and swell, limiting their widespread adoption. Unfortunately, the underlying reason remains unknown. By directly visualizing the swelling of hydrogels confined in three-dimensional granular media, we demonstrate that the extent of hydrogel swelling is determined by the competition between the force exerted by the hydrogel due to osmotic swelling and the confining force transmitted by the surrounding grains. Furthermore, the medium can itself be restructured by hydrogel swelling, as set by the balance between the osmotic swelling force, the confining force, and intergrain friction. Together, our results provide quantitative principles to predict how hydrogels behave in confinement, potentially improving their use in agriculture as well as informing other applications such as oil recovery, construction, mechanobiology, and filtration.


Author(s):  
Duane W. Storti ◽  
Debasish Dutta

Abstract We consider the path planning problem for a spherical object moving through a three-dimensional environment composed of spherical obstacles. Given a starting point and a terminal or target point, we wish to determine a collision free path from start to target for the moving sphere. We define an interference index to count the number of configuration space obstacles whose surfaces interfere simultaneously. In this paper, we present algorithms for navigating the sphere when the interference index is ≤ 2. While a global calculation is necessary to characterize the environment as a whole, only local knowledge is needed for path construction.


2011 ◽  
Vol 291-294 ◽  
pp. 3060-3063
Author(s):  
Hong Ming Wang ◽  
Bo Feng Yang ◽  
Bang Min Song ◽  
Ting Wang Zhang ◽  
Yong Qi Yan

A model on non-sinusoidal oscillation of continuous casting mould was established to study the pressure in flux channel. The effects of oscillation parameters on the pressure in flux channel were researched. The non-sinusoidal oscillation parameters were optimized. When the casting speed is 1.8 m·min-1, the optimized oscillation parameters are: non-sinusoidal factor (α) is 0.198, oscillation amplitude (s) is ±4mm and oscillation frequency (f) is 165min-1. When the casting speed is 2.0 m·min-1, the optimized oscillation parameters are: α is 0.186, s is ±4.5mm and f is 155min-1. These optimized oscillation parameters are proved applicable in practice.


2000 ◽  
Vol 6 (S2) ◽  
pp. 264-265
Author(s):  
J-F. Ménétret ◽  
D. G. Morgan ◽  
M. Radermacher ◽  
A. Neuhof ◽  
T. A. Rapoport ◽  
...  

Co-translational translocation at the endoplasmic reticulum (ER) plays a critical role in the targeting of both soluble and membrane proteins to their correct intra- and intercellular compartments. We are studying the 3D architecture of the ribosome-Sec61p complex (translocon), with the aim of understanding the physical mechanisms of gating and transport. To this end, we are using single particle electron cryo-microscopy and 3D reconstruction of frozen hydrated channel complexes, to obtain interpretable and biologically relevant maps.Previously, we have shown that both co- and post-translational translocation utilize a common central channel comprised of a ring-like Sec61p oligomer. Moreover, this channel morphology is shared with the related Sec YE complex from B. subtilus. Mass analysis, volume calculations and ribosome binding experiments suggest a stoichiometry of 3-4 Sec61p heterotrimers per ring. We currently favor 4 copies of the Sec61p complex per channel, as projection maps demonstrate 4 nearly equi-spaced peaks around the central pore.


Aerospace ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 33
Author(s):  
Sidaard Gunasekaran ◽  
Grant Ross

The use of flexible inverted piezo embedded Polyvinylidene Difluoride (PVDF) as a simultaneous energy harvester and as a wake sensor is explored. The oscillation amplitude (characterized by voltage output) and oscillation frequency of the piezo-embedded PDVF was quantified in the wake of a 2D NACA 0012 model and SD7003 model at a Reynolds number of 100,000 and 67,000, respectively. The performance of the sensor was also quantified in the freestream without the presence of the wing. In order to quantify the sensor response to angle of attack and downstream distance, the amplitude and frequency of oscillations were recorded in the wing wake. Increase in angle of attack of the wing resulted in increase in oscillation frequency and amplitude of the PVDF. The results also indicated that the inverted flag configuration performed better in the wake under unsteady conditions when compared to freestream conditions. The results from Particle Image Velocimetry indicated that the wake signature was not affected by the presence of the PVDF in the wake. The root mean square voltage contours in the wake of SD7003 airfoil show remarkable free shear layer wake features such as upper and lower surface stratification and downwash angle which shows the sensitivity of the sensor to the unsteadiness in the wake. The capability of this device to act as a potential energy harvester and as a sensor has serious implications in extending the mission capabilities of small UAVs.


Author(s):  
Jeffrey P. Thomas ◽  
Earl H. Dowell ◽  
Kenneth C. Hall

Presented is a frequency domain harmonic balance (HB) technique for modeling nonlinear unsteady aerodynamics of three-dimensional transonic inviscid flows about wing configurations. The method can be used to model efficiently nonlinear unsteady aerodynamic forces due to finite amplitude motions of a prescribed unsteady oscillation frequency. When combined with a suitable structural model, aeroelastic (fluid-structure), analyses may be performed at a greatly reduced cost relative to time marching methods to determine the limit cycle oscillations (LCO) that may arise. As a demonstration of the method, nonlinear unsteady aerodynamic response and limit cycle oscillation trends are presented for the AGARD 445.6 wing configuration. Computational results based on the inviscid flow model indicate that the AGARD 445.6 wing configuration exhibits only mildly nonlinear unsteady aerodynamic effects for relatively large amplitude motions. Furthermore, and most likely a consequence of the observed mild nonlinear aerodynamic behavior, the aeroelastic limit cycle oscillation amplitude is predicted to increase rapidly for reduced velocities beyond the flutter boundary. This is consistent with results from other time-domain calculations. Although not a configuration that exhibits strong LCO characteristics, the AGARD 445.6 wing nonetheless serves as an excellent example for demonstrating the HB/LCO solution procedure.


Author(s):  
Lambros Kaiktsis ◽  
George S. Triantafyllou

We present computational results of the flow dynamics and forces on a circular cylinder oscillating in-line with respect to a steady uniform stream. A wide range of oscillation frequencies is considered, from 0.5fs to 3fs, where fs is the natural Strouhal frequency of the Karman street. The oscillation amplitude is varied up to half the cylinder diameter. The Reynolds number value is 180, corresponding to two-dimensional flow. Simulations utilize a spectral element method. The computed flow states are characterized based on processed lift signals, and flow visualization. We find that the response of the flow is very sensitive to variations of the cylinder oscillation frequency. At low oscillation frequency, the lift signal and vortex patterns remain regular for low oscillation amplitudes, i.e. correspond to a 2S type of vortex street, and become complex at high oscillation amplitudes. Cylinder oscillation at the Strouhal frequency gives a window of chaotic flow at intermediate amplitudes, while at higher amplitudes 2S wakes are generated, with the sub-harmonic fs/2 and the higher harmonic 3fs/2 dominating the lift spectrum. Oscillation at twice the Strouhal frequency results in symmetric shedding, for oscillation amplitudes close to 30% of the cylinder diameter, and higher. Finally, at an oscillation frequency equal to three times the Strouhal frequency, the flow dynamics is very rich, characterized by “islands” of symmetric and asymmetric shedding at increasing oscillation amplitude. Chaotic flow is obtained only when the excitation frequency is equal to fs or to 3fs.


Sign in / Sign up

Export Citation Format

Share Document