scholarly journals Multi-Objective Instance Weighting-Based Deep Transfer Learning Network for Intelligent Fault Diagnosis

2021 ◽  
Vol 11 (5) ◽  
pp. 2370
Author(s):  
Kihoon Lee ◽  
Soonyoung Han ◽  
Van Huan Pham ◽  
Seungyon Cho ◽  
Hae-Jin Choi ◽  
...  

Fault diagnosis is a top-priority task for the health management of manufacturing processes. Deep learning-based methods are widely used to secure high fault diagnosis accuracy. Actually, it is difficult and expensive to collect large-scale data in industrial fields. Several prerequisite problems can be solved using transfer learning for fault diagnosis. Data from the source domain that are different but related to the target domain are used to increase the diagnosis performance of the target domain. However, a negative transfer occurs that degrades diagnosis performance due to the transfer when the discrepancy between and within domains is large. A multi-objective instance weighting-based transfer learning network is proposed to solve this problem and successfully applied to fault diagnosis. The proposed method uses a newly devised multi-objective instance weight to deal with practical situations where domain discrepancy is large. It adjusts the influence of the domain data on model training through two theoretically different indicators. Knowledge transfer is performed differentially by sorting instances similar to the target domain in terms of distribution with useful information for the target task. This domain optimization process maximizes the performance of transfer learning. A case study using an industrial robot and spot-welding testbed is conducted to verify the effectiveness of the proposed technique. The performance and applicability of transfer learning in the proposed method are observed in detail through the same case study as the actual industrial field for comparison. The diagnostic accuracy and robustness are high, even when few data are used. Thus, the proposed technique is a promising tool that can be used for successful fault diagnosis.

Author(s):  
Jialin Li ◽  
Xueyi Li ◽  
David He ◽  
Yongzhi Qu

In recent years, research on gear pitting fault diagnosis has been conducted. Most of the research has focused on feature extraction and feature selection process, and diagnostic models are only suitable for one working condition. To diagnose early gear pitting faults under multiple working conditions, this article proposes to develop a domain adaptation diagnostic model–based improved deep neural network and transfer learning with raw vibration signals. A particle swarm optimization algorithm and L2 regularization are used to optimize the improved deep neural network to improve the stability and accuracy of the diagnosis. When using the domain adaptation diagnostic model for fault diagnosis, it is necessary to discriminate whether the target domain (test data) is the same as the source domain (training data). If the target domain and the source domain are consistent, the trained improved deep neural network can be used directly for diagnosis. Otherwise, the transfer learning is combined with improved deep neural network to develop a deep transfer learning network to improve the domain adaptability of the diagnostic model. Vibration signals for seven gear types with early pitting faults under 25 working conditions collected from a gear test rig are used to validate the proposed method. It is confirmed by the validation results that the developed domain adaptation diagnostic model has a significant improvement in the adaptability of multiple working conditions.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110195
Author(s):  
Jianwen Guo ◽  
Xiaoyan Li ◽  
Zhenpeng Lao ◽  
Yandong Luo ◽  
Jiapeng Wu ◽  
...  

Fault diagnosis is of great significance to improve the production efficiency and accuracy of industrial robots. Compared with the traditional gradient descent algorithm, the extreme learning machine (ELM) has the advantage of fast computing speed, but the input weights and the hidden node biases that are obtained at random affects the accuracy and generalization performance of ELM. However, the level-based learning swarm optimizer algorithm (LLSO) can quickly and effectively find the global optimal solution of large-scale problems, and can be used to solve the optimal combination of large-scale input weights and hidden biases in ELM. This paper proposes an extreme learning machine with a level-based learning swarm optimizer (LLSO-ELM) for fault diagnosis of industrial robot RV reducer. The model is tested by combining the attitude data of reducer gear under different fault modes. Compared with ELM, the experimental results show that this method has good stability and generalization performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jun He ◽  
Xiang Li ◽  
Yong Chen ◽  
Danfeng Chen ◽  
Jing Guo ◽  
...  

In mechanical fault diagnosis, it is impossible to collect massive labeled samples with the same distribution in real industry. Transfer learning, a promising method, is usually used to address the critical problem. However, as the number of samples increases, the interdomain distribution discrepancy measurement of the existing method has a higher computational complexity, which may make the generalization ability of the method worse. To solve the problem, we propose a deep transfer learning method based on 1D-CNN for rolling bearing fault diagnosis. First, 1-dimension convolutional neural network (1D-CNN), as the basic framework, is used to extract features from vibration signal. The CORrelation ALignment (CORAL) is employed to minimize marginal distribution discrepancy between the source domain and target domain. Then, the cross-entropy loss function and Adam optimizer are used to minimize the classification errors and the second-order statistics of feature distance between the source domain and target domain, respectively. Finally, based on the bearing datasets of Case Western Reserve University and Jiangnan University, seven transfer fault diagnosis comparison experiments are carried out. The results show that our method has better performance.


2019 ◽  
Vol 11 (10) ◽  
pp. 1153 ◽  
Author(s):  
Mesay Belete Bejiga ◽  
Farid Melgani ◽  
Pietro Beraldini

Learning classification models require sufficiently labeled training samples, however, collecting labeled samples for every new problem is time-consuming and costly. An alternative approach is to transfer knowledge from one problem to another, which is called transfer learning. Domain adaptation (DA) is a type of transfer learning that aims to find a new latent space where the domain discrepancy between the source and the target domain is negligible. In this work, we propose an unsupervised DA technique called domain adversarial neural networks (DANNs), composed of a feature extractor, a class predictor, and domain classifier blocks, for large-scale land cover classification. Contrary to the traditional methods that perform representation and classifier learning in separate stages, DANNs combine them into a single stage, thereby learning a new representation of the input data that is both domain-invariant and discriminative. Once trained, the classifier of a DANN can be used to predict both source and target domain labels. Additionally, we also modify the domain classifier of a DANN to evaluate its suitability for multi-target domain adaptation problems. Experimental results obtained for both single and multiple target DA problems show that the proposed method provides a performance gain of up to 40%.


2020 ◽  
pp. 107754632093379
Author(s):  
Moslem Azamfar ◽  
Jaskaran Singh ◽  
Xiang Li ◽  
Jay Lee

This study proposes a novel 1D deep convolutional transfer learning method that is able to learn the high-dimensional domain-invariant feature from the labeled training dataset and perform diagnosis tasks on the unlabeled testing dataset subjected to a domain shift. To obtain the domain-invariant features, the cross-entropy loss in the source domain classifier and the maximum mean discrepancies between the source and target domain data are minimized simultaneously. To evaluate the performance of the proposed method, an experimental study is conducted on a gearbox under significant speed variation. Because of inherent limitations of the vibration data, in this research, the effectiveness of torque measurement signals has been explored for gearbox fault diagnosis. Comprehensive studies on network parameters and the training sample size are performed to illustrate the robustness and effectiveness of the proposed method. A comparison study is performed on similar techniques to illustrate the superiority and high performance of the proposed diagnosis method. The achieved results illustrate the effectiveness of torque signal in multiclass cross-domain fault diagnosis of gearboxes.


2020 ◽  
Vol 10 (13) ◽  
pp. 4523 ◽  
Author(s):  
Laith Alzubaidi ◽  
Mohammed A. Fadhel ◽  
Omran Al-Shamma ◽  
Jinglan Zhang ◽  
J. Santamaría ◽  
...  

One of the main challenges of employing deep learning models in the field of medicine is a lack of training data due to difficulty in collecting and labeling data, which needs to be performed by experts. To overcome this drawback, transfer learning (TL) has been utilized to solve several medical imaging tasks using pre-trained state-of-the-art models from the ImageNet dataset. However, there are primary divergences in data features, sizes, and task characteristics between the natural image classification and the targeted medical imaging tasks. Therefore, TL can slightly improve performance if the source domain is completely different from the target domain. In this paper, we explore the benefit of TL from the same and different domains of the target tasks. To do so, we designed a deep convolutional neural network (DCNN) model that integrates three ideas including traditional and parallel convolutional layers and residual connections along with global average pooling. We trained the proposed model against several scenarios. We utilized the same and different domain TL with the diabetic foot ulcer (DFU) classification task and with the animal classification task. We have empirically shown that the source of TL from the same domain can significantly improve the performance considering a reduced number of images in the same domain of the target dataset. The proposed model with the DFU dataset achieved F1-score value of 86.6% when trained from scratch, 89.4% with TL from a different domain of the targeted dataset, and 97.6% with TL from the same domain of the targeted dataset.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Gang Xiang ◽  
Kun Tian

In recent years, deep learning methods which promote the accuracy and efficiency of fault diagnosis task without any extra requirement of artificial feature extraction have elicited the attention of researchers in the field of manufacturing industry as well as aerospace. However, the problems that data in source and target domains usually have different probability distributions because of different working conditions and there are insufficient labeled or even unlabeled data in target domain significantly deteriorate the performance and generalization of deep fault diagnosis models. To address these problems, we propose a novel Wasserstein Generative Adversarial Network with Gradient Penalty- (WGAN-GP-) based deep adversarial transfer learning (WDATL) model in this study, which exploits a domain critic to learn domain invariant feature representations by minimizing the Wasserstein distance between the source and target feature distributions through adversarial training. Moreover, an improved one-dimensional convolutional neural network- (CNN-) based feature extractor which utilizes exponential linear units (ELU) as activation functions and wide kernels is designed to automatically extract the latent features of raw time-series input data. Then, the fault model classifier trained in one working condition (source domain) with sufficient labeled samples could be generalized to diagnose data in other working conditions (target domain) with insufficient labeled samples. Experiments on two open datasets demonstrate that our proposed WDATL model outperforms most of the state-of-the-art approaches on transfer diagnosis tasks under diverse working circumstances.


2020 ◽  
Vol 10 (21) ◽  
pp. 7768
Author(s):  
Seong Hee Cho ◽  
Seokgoo Kim ◽  
Joo-Ho Choi

In the fault diagnosis study, data deficiency, meaning that the fault data for the training are scarce, is often encountered, and it may deteriorate the performance of the fault diagnosis greatly. To solve this issue, the transfer learning (TL) approach is employed to exploit the neural network (NN) trained in another (source) domain where enough fault data are available in order to improve the NN performance of the real (target) domain. While there have been similar attempts of TL in the literature to solve the imbalance issue, they were about the sample imbalance between the source and target domain, whereas the present study considers the imbalance between the normal and fault data. To illustrate this, normal and fault datasets are acquired from the linear motion guide, in which the data at high and low speeds represent the real operation (target) and maintenance inspection (source), respectively. The effect of data deficiency is studied by reducing the number of fault data in the target domain, and comparing the performance of TL, which exploits the knowledge of the source domain and the ordinary machine learning (ML) approach without it. By examining the accuracy of the fault diagnosis as a function of imbalance ratio, it is found that the lower bound and interquartile range (IQR) of the accuracy are improved greatly by employing the TL approach. Therefore, it can be concluded that TL is truly more effective than the ordinary ML when there is a large imbalance between the fault and normal data, such as smaller than 0.1.


Sign in / Sign up

Export Citation Format

Share Document