scholarly journals Integrating Gear Shifting Preference into Personalized Shift-Scheduling Calibration

2021 ◽  
Vol 11 (7) ◽  
pp. 2986
Author(s):  
Xin He ◽  
Mingming Lin ◽  
Li Xu

Shift-scheduling calibration of automatic transmission (AT) vehicles is vital for both driving experience and automobile industry. Shifting schedules are usually calibrated with the consideration of fuel economy and drivability while neglecting the individual driving preference. In this work, we propose to exemplify the individual shifting preference by integrating the manual transmission (MT) shifting habit into the AT shift-scheduling calibration, where the habit is reflected as the shifting points and is available in most automated manual transmission (AMT) vehicles. The automated calibration of AT shifting schedules is directed by using the particle swarm optimization (PSO), during the virtual automobile cycle test, i.e., FTP-72. Candidate shifting-schedules are generated in the overlapped zone of MT shifting points and the space around the base map, and are evaluated on both shifting quality and fuel economy. Through iterations, the generated candidate shift schedules are tested and assessed until the overall performance reach the optimum. Experimental results are presented to show the effectiveness of the proposed method, which retains the shifting preferences as well as enhances the performance index by about 5%, 4%, and 2% for the drivers with aggressive, moderate, and mild styles, respectively.

Author(s):  
Y. Gene Liao ◽  
Chih-Ping Yeh ◽  
Allen M. Quail

The impact of the vehicle fuel economy in tactical convey is amplified due to the fact that much of the present logistics support is devoted to moving fuel. Fuel economy improvement on medium-duty tactical truck has and continues to be a significant initiative for the U. S. Army. The focus of this study is the investigation and analysis of Automated Manual Transmissions (AMT) that have potential to improve the fuel economy of the 2.5-ton cargo trucks. The current platform uses a seven-speed automatic transmission. This study utilized a combination of on-road experimental vehicle data and analytical vehicle model and simulation. This paper presented the results of (1) establishment of a validated, high fidelity baseline analytical vehicle model, (2) modeling and simulation of two AMTs and their control strategy, and (3) optimization of transmissions shift schedules to minimize the fuel consumption. The fuel economy discrepancy between experimental average and the baseline simulation result was 2.87%. The simulation results indicated a 12.2% and 14.5% fuel economy improvement for the 12-speed and 10-speed AMT respectively.


2013 ◽  
Vol 712-715 ◽  
pp. 2160-2163 ◽  
Author(s):  
Hao Qin ◽  
Shao Xiong Long ◽  
Kai Yu

Shift schedule has an important influence on the performances of the auto with automated manual transmission (AMT). It will affect fuel economy, dynamic and emission performance of vehicle. According to the numbers of the control parameters, shift schedule can be roughly divided into threemain categories: single parameter, two parameters, and three parameters schedule.This paper introduces how to simulate and generate the shift schedule in the auto with AMT on the basis of two parameters shift schedule which is widely used in the real auto engineering by using the Gear Shift Program (GSP) module of the Cruise software.The result shows that this method could generate the shift schedule accurately and quickly.These works could be used in the effective calibration of transmissions and shorten thevehicle development cycle.


Author(s):  
Nitin Srinath ◽  
Ashwin Kumar ◽  
Sharnappa Joladarashi

There are two basic types of transmissions — manual and automatic. While manual transmissions have greater transmission efficiency and better overall driving experience, it is difficult and not as easy to handle as automatic transmissions. Automatic transmissions make life a lot easier for the driver but are less efficient and laggard. So, the aim of this project is to take the best of both worlds and combine it in one, i.e. a transmission system that is capable of working as both a manual and an automatic transmission. For this, we plan to automate a regular manual transmission with a manual override option on both the clutch and the gearbox systems. Motors will be used to control the clutch and the changing of gears in the gearbox. In the manual mode, the motors will be operated by user input switches (clutch pedal and stick shift). In the automatic mode, the same motors will be controlled by a control algorithm based on various inputs like weight of the car, inclination, speed of the engine and the car etc.


Author(s):  
Lipeng Zhang ◽  
Xiaohong Zhang ◽  
Zongqi Han ◽  
Junyun Chen ◽  
Jingchao Liu

For a vehicle equipped with an automatic transmission, the shift control strategy should reflect the driver’s intention in the dynamic performance and the economy performance of the vehicle. However, the driver’s intention is difficult to identify and involve in the shift strategy because of the complexity of driving environments, the diversity of powertrain parameters and the randomness of the driver’s behaviour. Therefore, in this paper, by considering a vehicle equipped with an automated manual transmission as the study object, a novel multi-parameter coordinated shift control strategy is proposed on the basis of identification of the driver’s intention. First, in order to predict the intention of the driver more effectively, the relative opening degree of the accelerator is defined on the basis of the dynamic analysis. Then, the characteristics of the driver’s expected acceleration, which involve the influence of the driving environment, are proposed. They can be classified into five categories, namely stop, deceleration, keep, acceleration and urgent acceleration. Next, a fuzzy control system is designed to identify the driver’s acceleration characteristics in real time. This considers the vehicle speed, the rate of change in the opening degree of the accelerator and the relative opening degree of the accelerator as the inputs and the quantitative intention of the driver as the output. Finally, the novel multi-parameter coordinated shift control strategy is formulated on the basis of the vehicle speed, the opening degree of the accelerator and the quantitative intention of the driver. The designed shift strategy is compared with conventional methods using simulations and is verified by road tests. The results show that the shift control strategy can make the vehicle shift much more effective.


Author(s):  
Sarina Thomas ◽  
Lisa Kausch ◽  
Holger Kunze ◽  
Maxim Privalov ◽  
André Klein ◽  
...  

Abstract Purpose Reduction and osteosynthesis of ankle fractures is a challenging surgical procedure when it comes to the verification of the reduction result. Evaluation is conducted using intra-operative imaging of the injured ankle and depends on the expertise of the surgeon. Studies suggest that intra-individual variance of the ankle bone shape and pose is considerably lower than the inter-individual variance. It stands to reason that the information gain from the healthy contralateral side can help to improve the evaluation. Method In this paper, an assistance system is proposed that provides a side-to-side view of the two ankle joints for visual comparison and instant evaluation using only one 3D C-arm image. Two convolutional neural networks (CNN) are employed to extract the relevant image regions and pose information of each ankle so that they can be aligned with each other. A first U-Net uses a sliding window to predict the location of each ankle. The standard plane estimation is formulated as segmentation problem so that a second U-Net predicts the three viewing planes for alignment. Results Experiments were conducted to assess the accuracy of the individual steps on 218 unilateral ankle datasets as well as the overall performance on 7 bilateral ankle datasets. The experiments on unilateral ankles yield a median position-to-plane error of $$0.73\pm 1.36$$ 0.73 ± 1.36 mm and a median angular error between 2.98$$^\circ $$ ∘ and 3.71$$^\circ $$ ∘ for the plane normals. Conclusion Standard plane estimation via segmentation outperforms direct pose regression. Furthermore, the complete pipeline was evaluated including ankle detection and subsequent plane estimation on bilateral datasets. The proposed pipeline enables a direct contralateral side comparison without additional radiation. This has the potential to ease and improve the intra-operative evaluation for the surgeons in the future and reduce the need for revision surgery.


2012 ◽  
Author(s):  
Yulong Lei ◽  
Hongbo Liu ◽  
Jun Qiu ◽  
Jianguo Zhang ◽  
Youde Li

2021 ◽  
Vol 2121 (1) ◽  
pp. 012031
Author(s):  
Chuanbin Wei ◽  
Lizhu Zhang ◽  
You Fu ◽  
Faying Xia

Abstract Nowadays, the automobile industry is gradually developing towards the trend of electrification and intelligence. Compared with the traditional steering system, the steer-by-wire system cancels the mechanical transmission structure, reduces the space utilization, reduces the probability of damage to the driver caused by the steering system in the collision accident, and improves the driving portability and enhances the driver’s handling experience. The road feeling feedback of steer-by-wire system has the greatest impact on the driver’s driving experience. This paper discusses the research methods of road feeling feedback of steer-by-wire system, introduces the basic structure of road feeling feedback of steer-by-wire system, the basic idea of dynamic modeling, the establishment of simulation model of road feeling feedback, and the establishment method of control strategy and simulation platform of road feeling feedback. Finally, it summarizes and prospects in order to provide basic information and perspectives for the development and research of steer-by-wire system.


Sign in / Sign up

Export Citation Format

Share Document