Transient Analysis of Flow Unsteadiness and Noise Characteristics in a Centrifugal Compressor with a Novel Vaned Diffuser

2021 ◽  
Vol 11 (7) ◽  
pp. 3191
Author(s):  
Ali Zamiri ◽  
Kun Sung Park ◽  
Minsuk Choi ◽  
Jin Taek Chung

The demands to apply transonic centrifugal compressor have increased in the advanced gas turbine engines. Various techniques are used to increase the aerodynamic performance of the centrifugal compressor. The effects of the inclined leading edges in diffuser vanes of a transonic centrifugal compressor on the flow-field unsteadiness and noise generation are investigated by solving the compressible, three-dimensional, transient Navier–Stokes equations. Diffuser vanes with various inclination angles of the leading edge from shroud-to-hub and hub-to-shroud are numerically modeled. The results show that the hub-to-shroud inclined leading edge improves the compressor performance (2.6%), and the proper inclination angle is effective to increase the stall margin (3.88%). In addition, in this study, the transient pressure variations and radiated noise prediction at the design operating point of the compressor are emphasized. The influences of the inclined leading edges on the pressure waves were captured in time/space domain with different convective velocities. The pressure fluctuation spectra are calculated to investigate the tonal blade passing frequency (BPF) noise, and it is shown that the applied inclination angles in the diffuser blades are effective, not only to improve the aerodynamic performance and stall margin, but also to reduce the BPF noise (7.6 dB sound pressure level reduction). Moreover, it is found that the diffuser vanes with inclination angles could suppress the separation regions and eddy structures inside the passages of the diffuser, which results in reduction of the overall sound pressure level and the broadband noise radiated from the compressor.

Author(s):  
Menghao Wang ◽  
Xiaomin Liu

Airfoil is the basic element of fluid machinery and aircraft, and the noise generated from that is an important research aspect. Aiming to reduce the aerodynamic noise around the airfoil, this study proposes an airfoil inspired by the long-eared owl wing and another airfoil coupled with the bionic airfoil profile, leading edge waves, and trailing edge serrations. Numerical simulations dependent on the large eddy simulation method coupled with the wall-adapting local eddy-viscosity model and the Ffowcs Williams and Hawkings equation are conducted to compare the aerodynamic and acoustic characteristics of two types of bionic airfoils at low Reynolds number condition. The simulations reveal the dipole characteristic of acoustic source and sound pressure level distribution at various frequencies. Two types of bionic airfoils show lower noise compared with the conventional NACA 0012 airfoil with a similar relative thickness of 12%. Compared with the bionic airfoil, the average value of sound pressure level at the monitoring points around the bionic coupling airfoil is decreased by 9.94 dB, meanwhile the lift-to-drag ratio also keep higher. The bionic coupling airfoil exerts a suppression of sound pressure fluctuation on the airfoil surfaces, which result from that the range and size of separation vortices are reduced and the distance between vortices and airfoil surface are increased. The tube-shaped vortices in the wake of airfoil are effectively restrained and split into small scale vortices, which are important to cause less aerodynamic noise around the bionic coupling airfoil. Consequently, a novel bionic coupling airfoil is developed with the excellent aerodynamic and acoustic performance.


2020 ◽  
Author(s):  
Bo Li ◽  
Yujing Wu ◽  
Dange Guo ◽  
Dan Luo ◽  
Diangui HUANG

Abstract This paper imitates the raised structure of the leading edge of the humpback whale fin limbs, designed six bionic blades. The aerodynamic analysis show that: the wave leading edge blade can improve the total pressure efficiency of the axial flow fan, and under off-design conditions, the aerodynamic performance of bionic fan is better than that of prototype fan. The noise analysis shows that: under the condition of constant wave number, increasing wave amplitude can reduce the overall sound pressure level at the monitoring point, in the middle and high frequency range, the sound pressure level of the bionic fan at the monitoring point is significantly lower than that of the prototype fan, and the noise reduction effect increases with the increase of wave amplitude; under the condition of constant wave amplitude, increasing the wave number can reduce the fan noise. At a certain wave number and amplitude, the overall sound pressure level of the bionic fan at the monitoring point is at most 2.91 dB lower than that of the prototype fan. In this paper, the noise reduction effect of increasing wave number is more obvious than that of increasing wave amplitude.


Author(s):  
Li Zhang ◽  
Yingzi Jin ◽  
Yi Zhao ◽  
Pin Liu

To explore the effect of blade numbers on aerodynamic performance and noise of small axial flow fan, the steady flow field and the unsteady flow field of fan models with 6 different blade numbers (such as 5, 7, 9, 11, 13, 15) are numerically calculated. Then the internal flow distribution, static characteristic and aerodynamic noise are analyzed among six different fan models. The analysis results show: (1)Total pressure and efficiency generally maintain the trend of first increasing and then decreasing with increasing blade numbers, and it is the maximum when fan blade number is 11. The flow rate coupled with the maximum efficiency has never changed with increasing the blade numbers. (2)With increasing blade numbers, overall sound pressure level of the aerodynamic noise is gradually decreasing near the outlet of fan tip, while it is first decreasing and then increasing before decreasing again at 1 meter away from the central axis of the impeller along the outlet. When fan blade number is 11, overall sound pressure level of the aerodynamic noise is the greatest. Furthermore, the aerodynamic performance tests of fan models with 6 different blade numbers are carried out, the results of between the tests and the numerical calculations are roughly consistent. The research results will provide the proof of the parameter optimization and the structure design for high performance and low noise small axial fans.


2020 ◽  
Vol 34 (14) ◽  
pp. 2050145
Author(s):  
Rennian Li ◽  
Wenna Liang ◽  
Wei Han ◽  
Hui Quan ◽  
Rong Guo ◽  
...  

In order to investigate the turbulence-induced acoustic characteristics of hydrofoils, the flow and sound field for a model NH-15-18-1 asymmetric hydrofoil were calculated based on the mixed method of large eddy simulation (LES) with Lighthill analogy theory. Unsteady fluid turbulent stress source around the hydrofoil were selected as the inducements of quadrupole sound. The average velocity along the mainstream direction was calculated for different Reynolds numbers [Formula: see text]. Compared to experimental measurements, good agreement was seen over a range of [Formula: see text]. The results showed that the larger the [Formula: see text], the larger the vortex intensity, the shorter the vortex initial shedding position to the leading edge of the hydrofoil, and the higher the vortex shedding frequency [Formula: see text]. The maximum sound pressure level (SPL) of the hydrofoil was located at the trailing edge and wake of the hydrofoil, which coincided with the velocity curl [Formula: see text] distribution of the flow field. The maximum SPL of the sound field was consistent with the location of the vortex shedding. There were quadratic positive correlations between the total sound pressure level (TSPL) and the maximum value of the vortex intensity [Formula: see text] and velocity curl, which verified that shedding and diffusion of vortices are the fundamental cause of the generation of the quadrupole source noise.


Author(s):  
Chen Liu ◽  
Yipeng Cao ◽  
Sihui Ding ◽  
Wenping Zhang ◽  
Yuhang Cai ◽  
...  

A numerical study was conducted to investigate the effects of blade surface roughness on compressor performance and tonal noise emission. The equivalent sand-grain roughness model was used to account for blade surface roughness, and a hybrid method that combines computational fluid dynamics and boundary element method was used to predict compressor performance and tonal noise. The numerical approach was validated against experimental data for a baseline compressor. Nine different cases with different blade surface roughness were studied in this paper, the global performance was analyzed under compressor design speed, and the tonal noise level was predicted under the design condition. The results indicate that compressor total-to-total pressure ratio and isentropic efficiency were gradually decreased with the increasing blade surface roughness. Besides, the blade total pressure loss coefficient and the efficiency loss coefficient were also increased. It was found that the reverse flow at the leading edge of compressor rotor blades reduced blade loading. The pressure fluctuation at the leading edge showed that the peak of pressure fluctuations increased as the blade surface roughness was increased. The sound pressure level at blade-passing frequency shows a significant change with variation in blade surface roughness, which results in an increased total noise level. Furthermore, it was shown that the blade surface roughness had nearly no influence on acoustic directivity, but the sound pressure level increased with the increase in roughness, especially at blade-passing frequency.


2011 ◽  
Vol 199-200 ◽  
pp. 796-800
Author(s):  
Li Zhang ◽  
Ying Zi Jin

To more fully explore the effect of blade numbers on aerodynamic performance and noise of small axial flow fan, some solutions are adopted to obtain the parameters’ distribution of the flow field.Firstly, the standard k-ε turbulence model is used to calculate the steady flow field of six different fan blades(such as 5,7,9,11,13,15) , and the SIMPLE algorithm is applied to couple vecolity and pressure. Secondly, the large eddy simulation in conjunction with the FH-W noise model are used to compute the unsteady flow field and noise. Finally, the experimental results verify that the calculation methods of steady flow field and unsteady flow field are correct. The conclusions show: (1)Total pressure and efficiency generally maintain the trend of firstly increasing and then decreasing with increasing the blade numbers, and it is the greatest when fan blade number is 11. The flow rate coupled with the maximum efficiency has never changed with increasing the blade numbers. (2)With the increasing blades, overall sound pressure level of the aerodynamic noise is gradually decreasing near the outlet of fan tip, while it is firstly decreasing and then increasing before decreasing again 1 meter away from the central axis of the impeller along the outlet. When fan blade number is 11, overall sound pressure level of the aerodynamic noise is the greatest.


Author(s):  
Ali Zamiri ◽  
Byung Ju Lee ◽  
Jin Taek Chung

The three-dimensional, compressible, unsteady Navier-Stokes equations are solved to investigate the influence of the inclined leading edge diffuser vanes on the flow field and radiated noise from a transonic centrifugal compressor with high compression ratio. The computational domain is consisted of an inlet duct and a rotating impeller with splitter blades followed by a two-dimensional wedge vaned diffuser. The numerical method was validated by comparing the steady computational results with those of experiments in terms of pressure ratio and compressor efficiency at different operating points for the original diffuser. The transient simulations were verified by comparison of the velocity distribution with PIV data in normal flow condition before the onset of surge. In the case of steady simulations, seven types of diffuser vane with various inclination angles of leading edge were numerically modeled to investigate the effects of inclined leading edge on the diffuser pressure recovery and total pressure loss characteristics. The vaned diffuser with inclined leading edge reduces the interaction between the impeller discharge flow and diffuser leading edge which leads to improve the pressure recovery characteristics within the diffuser passage. Detailed flow analysis inside the diffuser passage showed the pressure ratio and compressor efficiency have been improved by the inclined leading edges. The maximum diffuser pressure recovery coefficient, 0.7185, and compressor efficiency, 84.80%, were observed in the case of 30 degree inclination angle from hub-to-shroud. In the case of transient simulations, five different inclined leading edge diffuser vanes were numerically conducted. The present study focuses on the unsteady pressure fluctuations and noise prediction within the impeller and diffuser passages at the compressor design point. The influences of inclination angle of diffuser vane leading edges on the pressure waves with different convective velocities, generated by the impeller-diffuser interaction and pseudo-periodic unsteady separation bubbles, were captured in the time/space domain along the diffuser blade surfaces. Since it is important to understand that the far-field acoustics are dominated by the internal pressure fluctuations inside the passages, the near-field pressure fluctuation spectra captured at the impeller-diffuser interface are evaluated to analyze the tonal BPF noise as the main noise source in the centrifugal compressors. It is shown that the inclined leading edges are very useful not only for improvement of the pressure recovery characteristics within the diffuser but also for the reduction of the interaction tonal BPF noise (around 7.6 dB SPL reduction). Furthermore, it was found that by using the inclined leading edge, the vortical structures and separations within the diffuser passages were reduced which may cause the attenuation of the broadband noise components and the overall sound pressure level.


Sign in / Sign up

Export Citation Format

Share Document