Numerical Investigation of the Inclined Leading Edge Diffuser Vane Effects on the Flow Unsteadiness and Noise Characteristics in a Transonic Centrifugal Compressor

Author(s):  
Ali Zamiri ◽  
Byung Ju Lee ◽  
Jin Taek Chung

The three-dimensional, compressible, unsteady Navier-Stokes equations are solved to investigate the influence of the inclined leading edge diffuser vanes on the flow field and radiated noise from a transonic centrifugal compressor with high compression ratio. The computational domain is consisted of an inlet duct and a rotating impeller with splitter blades followed by a two-dimensional wedge vaned diffuser. The numerical method was validated by comparing the steady computational results with those of experiments in terms of pressure ratio and compressor efficiency at different operating points for the original diffuser. The transient simulations were verified by comparison of the velocity distribution with PIV data in normal flow condition before the onset of surge. In the case of steady simulations, seven types of diffuser vane with various inclination angles of leading edge were numerically modeled to investigate the effects of inclined leading edge on the diffuser pressure recovery and total pressure loss characteristics. The vaned diffuser with inclined leading edge reduces the interaction between the impeller discharge flow and diffuser leading edge which leads to improve the pressure recovery characteristics within the diffuser passage. Detailed flow analysis inside the diffuser passage showed the pressure ratio and compressor efficiency have been improved by the inclined leading edges. The maximum diffuser pressure recovery coefficient, 0.7185, and compressor efficiency, 84.80%, were observed in the case of 30 degree inclination angle from hub-to-shroud. In the case of transient simulations, five different inclined leading edge diffuser vanes were numerically conducted. The present study focuses on the unsteady pressure fluctuations and noise prediction within the impeller and diffuser passages at the compressor design point. The influences of inclination angle of diffuser vane leading edges on the pressure waves with different convective velocities, generated by the impeller-diffuser interaction and pseudo-periodic unsteady separation bubbles, were captured in the time/space domain along the diffuser blade surfaces. Since it is important to understand that the far-field acoustics are dominated by the internal pressure fluctuations inside the passages, the near-field pressure fluctuation spectra captured at the impeller-diffuser interface are evaluated to analyze the tonal BPF noise as the main noise source in the centrifugal compressors. It is shown that the inclined leading edges are very useful not only for improvement of the pressure recovery characteristics within the diffuser but also for the reduction of the interaction tonal BPF noise (around 7.6 dB SPL reduction). Furthermore, it was found that by using the inclined leading edge, the vortical structures and separations within the diffuser passages were reduced which may cause the attenuation of the broadband noise components and the overall sound pressure level.

Author(s):  
S. Anish ◽  
N. Sitaram

A computational study has been conducted to analyze the performance of a centrifugal compressor under various levels of impeller-diffuser interactions. The study has been conducted using a low solidity vaned diffuser (LSVD), a conventional vaned diffuser (VD) and a vaneless diffuser (VLD). The study is carried out using Reynolds-Averaged Navier-Stokes simulations. A commercial software ANSYS CFX is used for this purpose. The intensity of interaction is varied by keeping the diffuser vane leading edge at three different radial locations. Frozen rotor and transient simulations are carried out at four different flow coefficients. At design flow coefficient maximum efficiency occurs when the leading edge is at R3 (ratio of radius of the diffuser leading edge to the impeller tip radius) = 1.10. At lower flow coefficient higher stage efficiency occurs when the diffuser vanes are kept at R3 = 1.15 and at higher flow coefficient R3 = 1.05 gives better efficiency. It is observed that at lower flow coefficients positive incidence causes separation of flow at the suction side of the diffuser vane. When the flow rate is above design point there is a negative incidence at the leading edge of the diffuser vane which causes separation of flow from the pressure side of the diffuser vane. Compressor stage performance as well as performance of individual components is calculated at different time steps. Large variations in the stage performances at off-design flow coefficients are observed. The static pressure recovery coefficient (Cp) value is found to be varying with the relative position of impeller and diffuser. It is observed that maximum Cp value occurred at time step where Ψloss value is lowest. From the transient simulations it has been found that the strength and location of impeller exit wake affect the diffuser vane loading which in turn influences the diffuser static pressure recovery.


Author(s):  
T. Ch. Siva Reddy ◽  
G. V. Ramana Murty ◽  
Prasad Mukkavilli ◽  
D. N. Reddy

Numerical simulation of impeller and low solidity vaned diffuser (LSD) of a centrifugal compressor stage is performed individually using CFX- BladeGen and BladeGenPlus codes. The tip mach number for the chosen study was 0.35. The same configuration was used for experimental investigation for a comparative study. The LSD vane is formed using standard NACA profile with marginal modification at trailing edge. The performance parameters obtained form numerical studies at the exit of impeller and the diffuser have been compared with the corresponding experimental data. These parameters are pressure ratio, polytropic efficiency and flow angle at the impeller exit where as the parameters those have been compared at the exit of diffuser are the static pressure recovery coefficient and the exit flow angle. In addition, the numerical prediction of the blade loading in terms of blade surface pressure distribution on LSD vane has been compared with the corresponding experimental results. Static pressure recovery coefficient and flow angle at diffuser exit is seen to match closely at higher flows. The difference at lower flows could be due to the effect of interaction between impeller and diffuser combinations, as the numerical analysis was done separately for impeller and diffuser and the effect of impeller diffuser interaction was not considered.


Author(s):  
Ali Zamiri ◽  
Byung Ju Lee ◽  
Jin Taek Chung

The three dimensional, compressible, unsteady Navier-Stokes equations are solved to investigate the flow field of a centrifugal compressor with high compression ratio. Computational domain is consisted of an inlet bell and impeller with splitter blades followed by a two dimensional wedge vaned diffuser. The numerical method is validated by comparing the computational results with the experiments in terms of pressure ratio and compressor efficiency. The present study focuses on the unsteady pressure fluctuations and entropy production within the impeller and diffuser passages at the compressor design point. It is shown that the interaction between the impeller and diffuser blades leads to unsteadiness at the interface region and a pulsating behavior within the diffuser passages. Pressure waves with different convective velocities, generated by the impeller-diffuser interaction and pseudo-periodic unsteady separation bubbles, are captured in time/space domain along the diffuser blade surfaces. The pressure fluctuation spectra captured at the impeller-diffuser interface is evaluated to analyze the noise characteristics of the centrifugal compressor as a main source of blade passing frequency noise.


Author(s):  
Hong-Won Kim ◽  
Jong-Il Park ◽  
Seung-Hyup Ryu ◽  
Seong-Wook Choi ◽  
Sang-Hak Ghal

An examination of the condition of the flow leaving the impeller exit kinetic energy often accounts for 30–50% of the shaft work input to the compressor stage, and for energy efficiency it is important to recover as much of this as possible. This is the function of the diffuser which follows the impeller. Effective pressure recovery downstream of an impeller is very important to realize a centrifugal compressor with high efficiency and high pressure ratio, and an appropriate selection of a diffuser for a specific impeller is a critical step to develop the compressor accordingly. The purpose of this study is to investigate the sensitivity of how compressor performances changes as vaned diffuser geometry is varied. Three kinds of vaned diffusers were studied and its results were compared. First vaned diffuser type is based on modified NACA airfoil and second is channel diffuser and third is conformal transformation of NACA 65 airfoil. A mean-line prediction method was applied to investigate the performance and stability for three kinds of diffusers. And CFD analyses have been done for comparison and detailed interior flow pattern study. In this study, the off-design behavior of three different types of diffusers, given by mean-line prediction, was investigated using CFD results and selected the NACA 65 diffuser geometry which satisfy wider operating range and higher pressure recovery than the others. The numerical results were compared with experimental data for validation.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Isabelle Trébinjac ◽  
Pascale Kulisa ◽  
Nicolas Bulot ◽  
Nicolas Rochuon

Numerical and experimental investigations were conducted in a transonic centrifugal compressor stage composed of a backswept splittered unshrouded impeller and a vaned diffuser. The characteristic curves of the compressor stage resulting from the unsteady simulations and the experiments show a good agreement over the whole operating range. On the contrary, the total pressure ratio resulting from the steady simulations is clearly overestimated. A detailed analysis of the flow field at design operating point led to identify the physical mechanisms involved in the blade row interaction that underlie the observed shift in performance. Attention was focused on the deformation in shape of the vane bow shock wave due its interaction with the jet and wake flow structure emerging from the impeller. An analytical model is proposed to quantify the time-averaged effects of the associated entropy increase. The model is based on the calculation of the losses across a shock wave at various inlet Mach numbers corresponding to the moving of the jet and wake flow in front of the shock wave. The model was applied to the compressor stage performance calculated with the steady simulations. The resulting curve of the overall pressure ratio as a function of the mass flow is clearly shifted toward the unsteady results. The model, in particular, enhances the prediction of the choked mass flow.


Author(s):  
Jonathan Everitt ◽  
Zoltán Spakovszky ◽  
Daniel Rusch ◽  
Jürg Schiffman

Highly-loaded impellers, typically used in turbocharger and gas turbine applications, exhaust an unsteady, transonic flow that is non-uniform across the span and pitch and swirling at angles approaching tangential. With the exception of the flow angle, conflicting data exist regarding whether these attributes have substantial influence on the performance of the downstream diffuser. This paper quantifies the relative importance of the flow angle, Mach number, non-uniformity and unsteadiness on diffuser performance, through diffuser experiments in a compressor stage and in a rotating swirling flow test rig. This is combined with steady and unsteady Reynolds-Averaged Navier Stokes computations. The test article is a pressure ratio 5 turbocharger compressor with an airfoil vaned diffuser. The swirling flow rig is able to generate rotor outflow conditions representative of the compressor except for the periodic pitchwise unsteadiness, and fits a 0.86 scale diffuser and volute. In both rigs, the time-mean impeller outflow is mapped across a diffuser pitch using miniaturized traversing probes developed for the purpose. Across approximately two-thirds of the stage operating range, diffuser performance is well correlated to the average impeller outflow angle when the metric used is effectiveness, which describes the pressure recovery obtained relative to the maximum possible given the average inflow angle and Mach number and the vane exit metal angle. Utilizing effectiveness captures density changes through the diffuser at higher Mach numbers; a 10% increase in pressure recovery is observed as the inlet Mach number is increased from 0.5 to 1. Further, effectiveness is shown to be largely independent of the time-averaged spanwise and unsteady pitchwise non-uniformity from the rotor; this independence is reflective of the strong mixing processes that occur in the diffuser inlet region. The observed exception is for operating points with high time-averaged vane incidence. Here, it is hypothesized that temporary excursions into high-loss flow regimes cause a nonlinear increase in loss as large unsteady angle variations pass by from the rotor. Given that straight-channel diffuser design charts typically used in preliminary radial vaned diffuser design capture neither streamtube area changes from impeller exit to the diffuser throat nor vane incidence effects, their utility is limited. An alternative approach, utilizing effectiveness and vane leading edge incidence, is proposed.


2021 ◽  
Vol 11 (7) ◽  
pp. 3191
Author(s):  
Ali Zamiri ◽  
Kun Sung Park ◽  
Minsuk Choi ◽  
Jin Taek Chung

The demands to apply transonic centrifugal compressor have increased in the advanced gas turbine engines. Various techniques are used to increase the aerodynamic performance of the centrifugal compressor. The effects of the inclined leading edges in diffuser vanes of a transonic centrifugal compressor on the flow-field unsteadiness and noise generation are investigated by solving the compressible, three-dimensional, transient Navier–Stokes equations. Diffuser vanes with various inclination angles of the leading edge from shroud-to-hub and hub-to-shroud are numerically modeled. The results show that the hub-to-shroud inclined leading edge improves the compressor performance (2.6%), and the proper inclination angle is effective to increase the stall margin (3.88%). In addition, in this study, the transient pressure variations and radiated noise prediction at the design operating point of the compressor are emphasized. The influences of the inclined leading edges on the pressure waves were captured in time/space domain with different convective velocities. The pressure fluctuation spectra are calculated to investigate the tonal blade passing frequency (BPF) noise, and it is shown that the applied inclination angles in the diffuser blades are effective, not only to improve the aerodynamic performance and stall margin, but also to reduce the BPF noise (7.6 dB sound pressure level reduction). Moreover, it is found that the diffuser vanes with inclination angles could suppress the separation regions and eddy structures inside the passages of the diffuser, which results in reduction of the overall sound pressure level and the broadband noise radiated from the compressor.


Author(s):  
Isabelle Tre´binjac ◽  
Pascale Kulisa ◽  
Nicolas Bulot ◽  
Nicolas Rochuon

Numerical and experimental investigations were conducted in a transonic centrifugal compressor stage composed of a backswept splittered unshrouded impeller and a vaned diffuser. The characteristic curves of the compressor stage resulting from the unsteady simulations and the experiments show a good agreement over the whole operating range. On the contrary, the total pressure ratio resulting from the steady simulations is clearly overestimated. A detailed analysis of the flow field at design operating point led to identify the physical mechanisms involved in the blade row interaction that underlie the observed shift in performance. Attention was focused on the deformation in shape of the vane bow shock wave due its interaction with the jet and wake flow structure emerging from the impeller. An analytical model is proposed to quantify the time-averaged effects of the associated entropy increase. The model is based on the calculation of the losses across a shock wave at various inlet Mach numbers corresponding to the moving of the jet and wake flow in front of the shock wave. The model was applied to the compressor stage performance calculated with the steady simulations. The resulting curve of the overall pressure ratio as a function of the mass flow is clearly shifted towards the unsteady results. The model in particular enhances the prediction of the choked mass flow.


2015 ◽  
Vol 137 (7) ◽  
Author(s):  
Klemens Vogel ◽  
Reza S. Abhari ◽  
Armin Zemp

Vaned diffusers in centrifugal compressor stages are used to achieve higher stage pressure ratios, higher stage efficiencies, and more compact designs. The interaction of the stationary diffuser with the impeller can lead to resonant vibration with potentially devastating effects. This paper presents unsteady diffuser vane surface pressure measurements using in-house developed, flush mounted, fast response piezoresistive pressure transducers. The unsteady pressures were recorded for nine operating conditions, covering a wide range of the compressor map. Experimental work was complemented by 3D unsteady computational fluid dynamics (CFD) simulations using ansys cfx V12.1 to detail the unsteady diffuser aerodynamics. Pressure fluctuations of up to 34.4% of the inlet pressure were found. High pressure variations are present all along the vane and are not restricted to the leading edge region. Frequency analysis of the measured vane surface pressures show that reduced impeller loading, and the corresponding reduction of tip leakage fluid changes the characteristics of the fluctuations from a main blade count to a total blade count. The unsteady pressure fluctuations in the diffuser originate from three distinct locations. The impact of the jet-wake flow leaving the impeller results in high variation close to the leading edge. It was observed that CFD results overpredicted the amplitude of the pressure fluctuation on average by 62%.


Author(s):  
Klemens Vogel ◽  
Reza S. Abhari ◽  
Armin Zemp

Vaned diffusers in centrifugal compressor stages are used to achieve higher stage pressure ratios, higher stage efficiencies and more compact designs. The interaction of the stationary diffuser with the impeller can lead to resonant vibration with potentially devastating effects. This paper presents unsteady diffuser vane surface pressure measurements using in-house developed, flush mounted, fast response piezo-resistive pressure transducers. The unsteady pressures were recorded for 9 operating conditions, covering a wide range of the compressor map. Experimental work was complemented by 3D unsteady CFD simulations using ANSYS CFX V12.1 to detail the unsteady diffuser aerodynamics. Pressure fluctuations of up to 34.4% of the inlet pressure were found. High pressure variations are present all along the vane and are not restricted to the leading edge region. Frequency analysis of the measured vane surface pressures show that reduced impeller loading and the corresponding reduction of tip leakage fluid changes the characteristics of the fluctuations from a main blade count to a total blade count. The unsteady pressure fluctuations in the diffuser originate from three distinct locations. The impact of the jet wake flow leaving the impeller results in high variation close to the leading edge. It was observed that CFD results overpredicted the amplitude of the pressure fluctuation on average by 62%.


Sign in / Sign up

Export Citation Format

Share Document