scholarly journals Characterization of Geometry and Surface Texture of AlSi10Mg Laser Powder Bed Fusion Channels Using X-ray Computed Tomography

2021 ◽  
Vol 11 (9) ◽  
pp. 4304
Author(s):  
Christopher G. Klingaa ◽  
Filippo Zanini ◽  
Sankhya Mohanty ◽  
Simone Carmignato ◽  
Jesper H. Hattel

Channels manufactured by laser powder bed fusion have an inherent process-induced dross formation and surface texture that require proper characterization for design and process optimization. This work undertakes surface texture characterization of AlSi10Mg channels of nominal diameter sizes ranging from 1 mm to 9 mm using X-ray computed tomography. Profile parameters, including Pa, Pz, and Pq, were found to be interchangeable for qualitative characterization of surface texture variation. Psk, Pvv, and the fractal dimension could identify the presence of extreme dross and sintered particles on the measured profiles. A method for predicting the equivalent diameter of the unobstructed cross-sectional area (Deq) was presented and its reduction was found to follow a logarithmic trend, as a function of channel length. An empirical model Pa (β, D), as a function of local angular position (β) and channel diameter (D), was demonstrated on a perfect channel geometry, resulting in well-predicted roughness and internal geometry.

2020 ◽  
Vol 36 ◽  
pp. 101445
Author(s):  
T. Dahmen ◽  
C.G. Klingaa ◽  
S. Baier-Stegmaier ◽  
A. Lapina ◽  
D.B. Pedersen ◽  
...  

2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Cara G. Kolb ◽  
Katja Zier ◽  
Jan-Carl Grager ◽  
Andreas Bachmann ◽  
Tobias Neuwirth ◽  
...  

AbstractLaser powder bed fusion (L-PBF) is increasingly used to fabricate functional parts used in safety-relevant applications. To ensure that the sophisticated part specifications are achieved, 100% quality inspections are performed subsequent to the buildup process. However, knowledge about the detectability of defects in L-PBF parts using NDT methods is limited. This paper analyzes the suitability of NDT techniques in an ex situ environment, in particular active infrared thermography, neutron grating interferometry (nGI), X-ray computed tomography, and ultrasonic testing for the examination of L-PBF parts made from Inconel 718. Based on a test specimen with artificially inserted defects with varying dimensions and depths, these NDT techniques were compared in terms of their attainable resolution and thus defect detection capability. The empirical studies revealed that nGI shows the highest resolution capability. It was possible to detect defects with a diameter of 100–200 m at a depth of 60–80 $${\upmu } \hbox {m}$$ μ m . The results are discussed with regard to their relevance for the examination of L-PBF parts and thus not only contribute to a better understanding of the potential of the NDT techniques in comparison but also assist stakeholders in additive manufacturing in evaluating the suitability of the NDT techniques investigated.


2019 ◽  
Vol 25 (S2) ◽  
pp. 2566-2567 ◽  
Author(s):  
Niranjan Parab ◽  
Cang Zhao ◽  
Ross Cunningham ◽  
Luis I. Escano ◽  
Kamel Fezzaa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document