scholarly journals 3D LOW-COST ACQUISITION FOR THE KNOWLEDGE OF CULTURAL HERITAGE: THE CASE STUDY OF THE BUST OF SAN NICOLA DA TOLENTINO

Author(s):  
A. Cardaci ◽  
A. Versaci ◽  
P. Azzola

Abstract. The creation of three-dimensional models for the cataloguing and documentation of cultural heritage is today an emerging need in the cultural sphere and, above all, for museums. The cultural heritage is still catalogued and documented based on descriptive files assorted of photographic images which, however, fail to outline its spatial richness, possible only through the use of 3D artefacts. The essay aims to propose a methodology of digitalization by low-cost and easy-to-use systems, to be employed even by non-expert survey and photogrammetry’s operators. The case study of the statue of San Nicola da Tolentino, preserved at the Sant’Agostino complex in Bergamo, offered the possibility of a comparison between 3D models acquired with different digitalization tools (professional/action/amateur cameras and smartphone) and processed by several image-based 3D Reconstruction software and methods.

2021 ◽  
Vol 11 (12) ◽  
pp. 5321
Author(s):  
Marcin Barszcz ◽  
Jerzy Montusiewicz ◽  
Magdalena Paśnikowska-Łukaszuk ◽  
Anna Sałamacha

In the era of the global pandemic caused by the COVID-19 virus, 3D digitisation of selected museum artefacts is becoming more and more frequent practice, but the vast majority is performed by specialised teams. The paper presents the results of comparative studies of 3D digital models of the same museum artefacts from the Silk Road area generated by two completely different technologies: Structure from Motion (SfM)—a method belonging to the so-called low-cost technologies—and by Structured-light 3D Scanning (3D SLS). Moreover, procedural differences in data acquisition and their processing to generate three-dimensional models are presented. Models built using a point cloud were created from data collected in the Afrasiyab museum in Samarkand (Uzbekistan) during “The 1st Scientific Expedition of the Lublin University of Technology to Central Asia” in 2017. Photos for creating 3D models in SfM technology were taken during a virtual expedition carried out under the “3D Digital Silk Road” program in 2021. The obtained results show that the quality of the 3D models generated with SfM differs from the models from the technology (3D SLS), but they may be placed in the galleries of the vitrual museum. The obtained models from SfM do not have information about their size, which means that they are not fully suitable for archiving purposes of cultural heritage, unlike the models from SLS.


Heritage ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 306-314
Author(s):  
Monica Bercigli

This paper reports the research carried out using Structure from Motion survey techniques, which were developed on the basis of previous surveys and their subsequent representation through two-dimensional (2D) and three-dimensional (3D) drawings of the tomb, comparing them with drawings and watercolors by several painters of the past. This survey technique enables the reconstruction of three-dimensional models through photographs. The aim of this work is to define a procedural process which allows accurate and reliable three-dimensional reconstructions to be performed for the acquisition of knowledge and the dissemination of cultural heritage, taking advantage of representation and visualization techniques that have been developed in the last decade and that are based on historical references. The variety of digital products which can be produced (video games, 3D models, prints, websites, and augmented reality applications) allows a different approach to the representation to be taken, thereby re-evaluating limits, aims, and expressive potential. The virtual representative systems, enriched with cultural content, scientific information, and data, enhance the participation and awareness of knowledge of the final users of the products and are able to increase the interaction between the user and the information.


Author(s):  
M. Canciani ◽  
E. Conigliaro ◽  
M. Del Grasso ◽  
P. Papalini ◽  
M. Saccone

The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets) and shareware software (in the case presented “Augment”) it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic), are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image recognition. On the other hand, to show the results also during the graduation day, the same application has been created in off-site condition using a poster.


2019 ◽  
Vol 16 (161) ◽  
pp. 20190674 ◽  
Author(s):  
Nuria Melisa Morales-García ◽  
Thomas D. Burgess ◽  
Jennifer J. Hill ◽  
Pamela G. Gill ◽  
Emily J. Rayfield

Finite-element (FE) analysis has been used in palaeobiology to assess the mechanical performance of the jaw. It uses two types of models: tomography-based three-dimensional (3D) models (very accurate, not always accessible) and two-dimensional (2D) models (quick and easy to build, good for broad-scale studies, cannot obtain absolute stress and strain values). Here, we introduce extruded FE models, which provide fairly accurate mechanical performance results, while remaining low-cost, quick and easy to build. These are simplified 3D models built from lateral outlines of a relatively flat jaw and extruded to its average width. There are two types: extruded (flat mediolaterally) and enhanced extruded (accounts for width differences in the ascending ramus). Here, we compare mechanical performance values resulting from four types of FE models (i.e. tomography-based 3D, extruded, enhanced extruded and 2D) in Morganucodon and Kuehneotherium . In terms of absolute values, both types of extruded model perform well in comparison to the tomography-based 3D models, but enhanced extruded models perform better. In terms of overall patterns, all models produce similar results. Extruded FE models constitute a viable alternative to the use of tomography-based 3D models, particularly in relatively flat bones.


Author(s):  
P. Clini ◽  
N. Frapiccini ◽  
M. Mengoni ◽  
R. Nespeca ◽  
L. Ruggeri

Digital documentation and high-quality 3D representation are always more requested in many disciplines and areas due to the large amount of technologies and data available for fast, detailed and quick documentation. This work aims to investigate the area of medium and small sized artefacts and presents a fast and low cost acquisition system that guarantees the creation of 3D models with an high level of detail, making the digitalization of cultural heritage a simply and fast procedure. The 3D models of the artefacts are created with the photogrammetric technique Structure From Motion that makes it possible to obtain, in addition to three-dimensional models, high-definition images for a deepened study and understanding of the artefacts. For the survey of small objects (only few centimetres) it is used a macro lens and the focus stacking, a photographic technique that consists in capturing a stack of images at different focus planes for each camera pose so that is possible to obtain a final image with a higher depth of field. The acquisition with focus stacking technique has been finally validated with an acquisition with laser triangulation scanner Minolta that demonstrates the validity compatible with the allowable error in relation to the expected precision.


2017 ◽  
Vol 1 (2) ◽  
pp. 269-281
Author(s):  
Carlo Battini ◽  
Elena Sorge

The work presented wants to show how different techniques of expeditious relief can be combined together in order to better describe the subject studied. Techniques of digital projection as laser scanner, topography and Structure from Motion can be used simultaneously and interact with each other to create a rich database of colorimetric and metrics information. Methodologies that, at the same time, present the peculiarities and errors of peculiar relief of the technology employed.The case study examined in this type of research is the discovery of the amphitheater of Volterra. Discovered in July 2015 during the phases of reclamation of a stream, is located close to Porta Diana and a few hundred meters from the Roman Theater discovered in the last century. An excavation campaign undertaken Between October and November 2015 has allowed us to bring to light the crests of the supporting walls of the structure, revealing the presence of the three orders and a depth of about ten meters.The step of post processing has finally seen the use of three-dimensional models acquired both for the creation of images metrics necessary to the study of the stratigraphic units, both for studying a mobile application, 3D models and data of the excavation, easy to use for transmitting the information collected.  


The tourism sector is one of the major industries in Italy that has a high impact on local communities in terms of employment and economy. To show the results of a research project highlighting the use of new technology in the tourism sector, the Geomatics Laboratory of the Mediterranea University of Reggio Calabria has developed a mobile application for tourism. The case study is "Calarcheo Park", a nonaccessible underwater archaeological park located in Reggio Calabria, near the remains of the old walls of the ancient city of Reggio Calabria (Reghion, dating back to about the VIII B.C.). The main aim of this paper is to describe the process to relive and re-propose the experience of a real immersion through a journey in virtual reality. Particular attention was given to the research part concerning the simplification processes of the models inserted within an app for tourism sector. The concept app includes scenarios (seabed) and objects (Castle and artefact) obtained from three-dimensional models realized through photogrammetric techniques, therefore "heavy" models in terms of space necessary to store them, recall them and possibly process them. Considering the visualization purpose, and the metric precision needed, the 3d models were reconstructed using a rapid method. To minimize the difficulties during the direct underwater survey carried out by a human operator (e.g. limited time available during the survey, accentuated inaccuracy due to human errors), the operations were carried out using an experimental ROV (Remote Operated Vehicles), widely used to explore underwater environments, equipped with cameras to perform photogrammetric acquisition in a single dive. To enhance the results and quality of the 3d model, a procedure to improve the image quality, and optimizing the processing is also described. This work therefore illustrates the possibilities of using 3D models created by geomatics techniques within virtual environments for apps for tourism purposes


Author(s):  
Quentin Kevin Gautier ◽  
Thomas G. Garrison ◽  
Ferrill Rushton ◽  
Nicholas Bouck ◽  
Eric Lo ◽  
...  

PurposeDigital documentation techniques of tunneling excavations at archaeological sites are becoming more common. These methods, such as photogrammetry and LiDAR (Light Detection and Ranging), are able to create precise three-dimensional models of excavations to complement traditional forms of documentation with millimeter to centimeter accuracy. However, these techniques require either expensive pieces of equipment or a long processing time that can be prohibitive during short field seasons in remote areas. This article aims to determine the effectiveness of various low-cost sensors and real-time algorithms to create digital scans of archaeological excavations.Design/methodology/approachThe authors used a class of algorithms called SLAM (Simultaneous Localization and Mapping) along with depth-sensing cameras. While these algorithms have largely improved over recent years, the accuracy of the results still depends on the scanning conditions. The authors developed a prototype of a scanning device and collected 3D data at a Maya archaeological site and refined the instrument in a system of natural caves. This article presents an analysis of the resulting 3D models to determine the effectiveness of the various sensors and algorithms employed.FindingsWhile not as accurate as commercial LiDAR systems, the prototype presented, employing a time-of-flight depth sensor and using a feature-based SLAM algorithm, is a rapid and effective way to document archaeological contexts at a fraction of the cost.Practical implicationsThe proposed system is easy to deploy, provides real-time results and would be particularly useful in salvage operations as well as in high-risk areas where cultural heritage is threatened.Originality/valueThis article compares many different low-cost scanning solutions for underground excavations, along with presenting a prototype that can be easily replicated for documentation purposes.


2015 ◽  
Vol 6 (12) ◽  
pp. 58 ◽  
Author(s):  
José L. Caro ◽  
Salvador Hansen

<p>Everyone knows the importance of new technologies and the growth they have had in mobile devices. Today in the field of study and dissemination of cultural heritage (including archaeological), the use of digital 3D models and associated technologies are a tool to increase the registration quality and consequently a better basis for interpretation and dissemination for cultural tourism, education and research. Within this area is gaining positions photogrammetry over other technologies due to its low cost. We can generate 3D models from forografí as through a set of algorithms that are able to obtain very approximate models and very realistic textures. In this paper we propose the use of game-engines to incorporate one element diffusion: the ability to navigate the 3D model realistically. As a case study we use a Menga dolmen that will serve as a study and demonstration of the techniques employed. </p>


Author(s):  
M. Canciani ◽  
E. Conigliaro ◽  
M. Del Grasso ◽  
P. Papalini ◽  
M. Saccone

The development of close-range photogrammetry has produced a lot of new possibility to study cultural heritage. 3D data acquired with conventional and low cost cameras can be used to document, investigate the full appearance, materials and conservation status, to help the restoration process and identify intervention priorities. At the same time, with 3D survey a lot of three-dimensional data are collected and analyzed by researchers, but there are a very few possibility of 3D output. The augmented reality is one of this possible output with a very low cost technology but a very interesting result. Using simple mobile technology (for iPad and Android Tablets) and shareware software (in the case presented “Augment”) it is possible to share and visualize a large number of 3D models with your own device. The case study presented is a part of an architecture graduate thesis, made in Rome at Department of Architecture of Roma Tre University. We have developed a photogrammetric survey to study the Aurelian Wall at Castra Praetoria in Rome. The surveys of 8000 square meters of surface have allowed to identify stratigraphy and construction phases of a complex portion of Aurelian Wall, specially about the Northern door of Castra. During this study, the data coming out of 3D survey (photogrammetric and topographic), are stored and used to create a reverse 3D model, or virtual reconstruction, of the Northern door of Castra. This virtual reconstruction shows the door in the Tiberian period, nowadays it's totally hidden by a curtain wall but, little and significative architectural details allow to know its original feature. The 3D model of the ancient walls has been mapped with the exact type of bricks and mortar, oriented and scaled according to the existing one to use augmented reality. Finally, two kind of application have been developed, one on site, were you can see superimposed the virtual reconstruction on the existing walls using the image recognition. On the other hand, to show the results also during the graduation day, the same application has been created in off-site condition using a poster.


Sign in / Sign up

Export Citation Format

Share Document