Low-cost 3D scanning systems for cultural heritage documentation

Author(s):  
Quentin Kevin Gautier ◽  
Thomas G. Garrison ◽  
Ferrill Rushton ◽  
Nicholas Bouck ◽  
Eric Lo ◽  
...  

PurposeDigital documentation techniques of tunneling excavations at archaeological sites are becoming more common. These methods, such as photogrammetry and LiDAR (Light Detection and Ranging), are able to create precise three-dimensional models of excavations to complement traditional forms of documentation with millimeter to centimeter accuracy. However, these techniques require either expensive pieces of equipment or a long processing time that can be prohibitive during short field seasons in remote areas. This article aims to determine the effectiveness of various low-cost sensors and real-time algorithms to create digital scans of archaeological excavations.Design/methodology/approachThe authors used a class of algorithms called SLAM (Simultaneous Localization and Mapping) along with depth-sensing cameras. While these algorithms have largely improved over recent years, the accuracy of the results still depends on the scanning conditions. The authors developed a prototype of a scanning device and collected 3D data at a Maya archaeological site and refined the instrument in a system of natural caves. This article presents an analysis of the resulting 3D models to determine the effectiveness of the various sensors and algorithms employed.FindingsWhile not as accurate as commercial LiDAR systems, the prototype presented, employing a time-of-flight depth sensor and using a feature-based SLAM algorithm, is a rapid and effective way to document archaeological contexts at a fraction of the cost.Practical implicationsThe proposed system is easy to deploy, provides real-time results and would be particularly useful in salvage operations as well as in high-risk areas where cultural heritage is threatened.Originality/valueThis article compares many different low-cost scanning solutions for underground excavations, along with presenting a prototype that can be easily replicated for documentation purposes.

2021 ◽  
Vol 11 (12) ◽  
pp. 5321
Author(s):  
Marcin Barszcz ◽  
Jerzy Montusiewicz ◽  
Magdalena Paśnikowska-Łukaszuk ◽  
Anna Sałamacha

In the era of the global pandemic caused by the COVID-19 virus, 3D digitisation of selected museum artefacts is becoming more and more frequent practice, but the vast majority is performed by specialised teams. The paper presents the results of comparative studies of 3D digital models of the same museum artefacts from the Silk Road area generated by two completely different technologies: Structure from Motion (SfM)—a method belonging to the so-called low-cost technologies—and by Structured-light 3D Scanning (3D SLS). Moreover, procedural differences in data acquisition and their processing to generate three-dimensional models are presented. Models built using a point cloud were created from data collected in the Afrasiyab museum in Samarkand (Uzbekistan) during “The 1st Scientific Expedition of the Lublin University of Technology to Central Asia” in 2017. Photos for creating 3D models in SfM technology were taken during a virtual expedition carried out under the “3D Digital Silk Road” program in 2021. The obtained results show that the quality of the 3D models generated with SfM differs from the models from the technology (3D SLS), but they may be placed in the galleries of the vitrual museum. The obtained models from SfM do not have information about their size, which means that they are not fully suitable for archiving purposes of cultural heritage, unlike the models from SLS.


Sensor Review ◽  
2018 ◽  
Vol 38 (3) ◽  
pp. 282-288 ◽  
Author(s):  
Abdalmenem Owda ◽  
José Balsa-Barreiro ◽  
Dieter Fritsch

Purpose Representative cultural heritage sites and monuments around the world have been lost or damaged by natural disasters, human conflicts and daily erosion and deterioration. Documentation and digital preservation by using three-dimensional (3D) modeling techniques enables to ensure the knowledge and access for future generations. Efficient working methods and techniques should be proposed for this purpose. Design/methodology/approach In this paper, a methodology for the generation of 3D photorealistic models of representative historical buildings is introduced, for using data are obtained using terrestrial laser scanning systems and photogrammetry. Findings In this paper, an approach to reconstruct 3D photorealistic models by using laser scanning and photogrammetric data is shown. Combination of data from both sources offers an improved solution for 3D reconstruction of historical buildings, sites and places. Integration of 3D models into virtual globes and/or software applications can ensure digital preservation and knowledge for next generations. Research limitations/implications Results obtained in a concrete building are shown. However, each building or studied area can show some other different drawbacks. Practical implications The study enables to generate 3D and four-dimensional models of most valuable buildings and contribute to the preservation and documentation of the cultural heritage. Social implications The study enables digital documentation and preservation of cultural heritage. Originality/value A proper solution at field (in a real and complicated case) is explained, in addition to the results, which are shown.


Author(s):  
A. Cardaci ◽  
A. Versaci ◽  
P. Azzola

Abstract. The creation of three-dimensional models for the cataloguing and documentation of cultural heritage is today an emerging need in the cultural sphere and, above all, for museums. The cultural heritage is still catalogued and documented based on descriptive files assorted of photographic images which, however, fail to outline its spatial richness, possible only through the use of 3D artefacts. The essay aims to propose a methodology of digitalization by low-cost and easy-to-use systems, to be employed even by non-expert survey and photogrammetry’s operators. The case study of the statue of San Nicola da Tolentino, preserved at the Sant’Agostino complex in Bergamo, offered the possibility of a comparison between 3D models acquired with different digitalization tools (professional/action/amateur cameras and smartphone) and processed by several image-based 3D Reconstruction software and methods.


2018 ◽  
Vol 7 (1) ◽  
pp. 11
Author(s):  
Syed Muhammad Ali ◽  
Zeeshan Mahmood ◽  
Dr. Tahir Qadri

This paper presents an intuitive and interactive computer simulated augmented reality interface that gives the illusion of a 3D immersive environment. The projector displays a rendered virtual scene on a flat 2D surface (floor or table) based on the user’s viewpoint to create a head coupled perspective. The projected image is view-dependent which changes and deforms relative to user’s position in space. The nature of perspective projection is distorted and anamorphic such that the deformations in the image give an illusion of a virtual three dimensional holographic scene in which the objects are popping out or floating above the projection plane like real 3D objects. Also, the user can manipulate and interact with 3D objects in a virtual environment by controlling the position and orientation of 3D models, interacting with GUI incorporated in virtual scene and can view, move, manipulate and observe the details of objects from any angle naturally by using his hands. The head and hand tracking is achieved by a low cost 3D depth sensor ‘Kinect’. We describe the implementation of the system in OpenGL and Unity3D game engine. Stereoscopic 3D along with other enhancements are also introduced which further improves the 3D perception. The approach does not require head mounted displays or expensive 3D hologram projectors as it is based on perspective projection technique. Our experiments show the potential of the system providing users a powerful, realistic illusion of 3D.


2018 ◽  
Vol 1 (1) ◽  
pp. 11
Author(s):  
Syed Muhammad Ali ◽  
Zeeshan Mahmood ◽  
Dr. Tahir Qadri

This paper presents an intuitive and interactive computer simulated augmented reality interface that gives the illusion of a 3D immersive environment. The projector displays a rendered virtual scene on a flat 2D surface (floor or table) based on the user’s viewpoint to create a head coupled perspective. The projected image is view-dependent which changes and deforms relative to user’s position in space. The nature of perspective projection is distorted and anamorphic such that the deformations in the image give an illusion of a virtual three dimensional holographic scene in which the objects are popping out or floating above the projection plane like real 3D objects. Also, the user can manipulate and interact with 3D objects in a virtual environment by controlling the position and orientation of 3D models, interacting with GUI incorporated in virtual scene and can view, move, manipulate and observe the details of objects from any angle naturally by using his hands. The head and hand tracking is achieved by a low cost 3D depth sensor ‘Kinect’. We describe the implementation of the system in OpenGL and Unity3D game engine. Stereoscopic 3D along with other enhancements are also introduced which further improves the 3D perception. The approach does not require head mounted displays or expensive 3D hologram projectors as it is based on perspective projection technique. Our experiments show the potential of the system providing users a powerful, realistic illusion of 3D.


Author(s):  
C. Santagati ◽  
M. Lo Turco ◽  
M. M. Bocconcino ◽  
V. Donato ◽  
M. Galizia

Nowadays, 3D digital imaging proposes effective solutions for preserving the expression of human creativity across the centuries, as well as is a great tool to guarantee global dissemination of knowledge and wide access to these invaluable resources of the past. Nevertheless, in several cases, a massive digitalisation of cultural heritage items (from the archaeological site up to the monument and museum collections) could be unworkable due to the still high costs in terms of equipment and human resources: 3D acquisition technologies and the need of skilled team within cultural institutions. Therefore, it is necessary to explore new possibilities offered by growing technologies: the lower costs of these technologies as well as their attractive visual quality constitute a challenge for researchers. Besides these possibilities, it is also important to consider how information is spread through graphic representation of knowledge. The focus of this study is to explore the potentialities and weaknesses of a newly released low cost device in the cultural heritage domain, trying to understand its effective usability in museum collections. The aim of the research is to test their usability, critically analysing the final outcomes of this entry level technology in relation to the other better assessed low cost technologies for 3D scanning, such as Structure from Motion (SfM) techniques (also produced by the same device) combined with dataset generated by a professional digital camera. The final outcomes were compared in terms of quality definition, time processing and file size. The specimens of the collections of the Civic Museum Castello Ursino in Catania have been chosen as the site of experimentation.


Author(s):  
M. Hermann ◽  
B. Ruf ◽  
M. Weinmann

Abstract. Real-time 3D reconstruction enables fast dense mapping of the environment which benefits numerous applications, such as navigation or live evaluation of an emergency. In contrast to most real-time capable approaches, our method does not need an explicit depth sensor. Instead, we only rely on a video stream from a camera and its intrinsic calibration. By exploiting the self-motion of the unmanned aerial vehicle (UAV) flying with oblique view around buildings, we estimate both camera trajectory and depth for selected images with enough novel content. To create a 3D model of the scene, we rely on a three-stage processing chain. First, we estimate the rough camera trajectory using a simultaneous localization and mapping (SLAM) algorithm. Once a suitable constellation is found, we estimate depth for local bundles of images using a Multi-View Stereo (MVS) approach and then fuse this depth into a global surfel-based model. For our evaluation, we use 55 video sequences with diverse settings, consisting of both synthetic and real scenes. We evaluate not only the generated reconstruction but also the intermediate products and achieve competitive results both qualitatively and quantitatively. At the same time, our method can keep up with a 30 fps video for a resolution of 768 × 448 pixels.


2021 ◽  
Vol 13 (3) ◽  
pp. 486
Author(s):  
Fabrizio Ivan Apollonio ◽  
Filippo Fantini ◽  
Simone Garagnani ◽  
Marco Gaiani

Nowadays digital replicas of artefacts belonging to the Cultural Heritage (CH) are one of the most promising innovations for museums exhibitions, since they foster new forms of interaction with collections, at different scales. However, practical digitization is still a complex task dedicated to specialized operators. Due to these premises, this paper introduces a novel approach to support non-experts working in museums with robust, easy-to-use workflows based on low-cost widespread devices, aimed at the study, classification, preservation, communication and restoration of CH artefacts. The proposed methodology introduces an automated combination of acquisition, based on mobile equipment and visualization, based on Real-Time Rendering. After the description of devices used along the workflow, the paper focuses on image pre-processing and geometry processing techniques adopted to generate accurate 3D models from photographs. Assessment criteria for the developed process evaluation are illustrated. Tests of the methodology on some effective museum case studies are presented and discussed.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Jerzy Montusiewicz ◽  
Marek Miłosz ◽  
Jacek Kęsik ◽  
Kamil Żyła

AbstractHistorical costumes are part of cultural heritage. Unlike architectural monuments, they are very fragile, which exacerbates the problems of their protection and popularisation. A big help in this can be the digitisation of their appearance, preferably using modern techniques of three-dimensional representation (3D). The article presents the results of the search for examples and methodologies of implementing 3D scanning of exhibited historical clothes as well as the attendant problems. From a review of scientific literature it turns out that so far practically no one in the world has made any methodical attempts at scanning historical clothes using structured-light 3D scanners (SLS) and developing an appropriate methodology. The vast majority of methods for creating 3D models of clothes used photogrammetry and 3D modelling software. Therefore, an innovative approach was proposed to the problem of creating 3D models of exhibited historical clothes through their digitalisation by means of a 3D scanner using structural light technology. A proposal for the methodology of this process and concrete examples of its implementation and results are presented. The problems related to the scanning of 3D historical clothes are also described, as well as a proposal how to solve them or minimise their impact. The implementation of the methodology is presented on the example of scanning elements of the Emir of Bukhara's costume (Uzbekistan) from the end of the nineteenth century, consisting of the gown, turban and shoes. Moreover, the way of using 3D models and information technologies to popularise cultural heritage in the space of digital resources is also discussed.


Sensor Review ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Shengbo Sang ◽  
Ruiyong Zhai ◽  
Wendong Zhang ◽  
Qirui Sun ◽  
Zhaoying Zhou

Purpose – This study aims to design a new low-cost localization platform for estimating the location and orientation of a pedestrian in a building. The micro-electro-mechanical systems (MEMS) sensor error compensation and the algorithm were improved to realize the localization and altitude accuracy. Design/methodology/approach – The platform hardware was designed with common low-performance and inexpensive MEMS sensors, and with a barometric altimeter employed to augment altitude measurement. The inertial navigation system (INS) – extended Kalman filter (EKF) – zero-velocity updating (ZUPT) (INS-EKF-ZUPT [IEZ])-extended methods and pedestrian dead reckoning (PDR) (IEZ + PDR) algorithm were modified and improved with altitude determined by acceleration integration height and pressure altitude. The “AND” logic with acceleration and angular rate data were presented to update the stance phases. Findings – The new platform was tested in real three-dimensional (3D) in-building scenarios, achieved with position errors below 0.5 m for 50-m-long route in corridor and below 0.1 m on stairs. The algorithm is robust enough for both the walking motion and the fast dynamic motion. Originality/value – The paper presents a new self-developed, integrated platform. The IEZ-extended methods, the modified PDR (IEZ + PDR) algorithm and “AND” logic with acceleration and angular rate data can improve the high localization and altitude accuracy. It is a great support for the increasing 3D location demand in indoor cases for universal application with ordinary sensors.


Sign in / Sign up

Export Citation Format

Share Document