scholarly journals Interaction between Different Implant Surfaces and Liquid Fibrinogen: A Pilot In Vitro Experiment

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Catherine X. Andrade ◽  
Marc Quirynen ◽  
David R. Rosenberg ◽  
Nelson R. Pinto

Background. Platelet concentrates like leucocyte- and platelet-rich fibrin (L-PRF) have been widely evaluated in different oral surgical procedures to promote the healing process. However, liquid L-PRF products such as liquid fibrinogen have been poorly explored, especially in the biomimetic functionalization of dental implants. The aim of this in vitro study is to evaluate the interaction between 5 different dental implant surfaces and liquid fibrinogen. Methods. Five commercially available dental implants with different surfaces (Osseospeed™, TiUnite™, SLActive®, Ossean®, and Plenum®) were immersed for 60 minutes in liquid fibrinogen obtained from healthy donors. After this period, the implants were removed and fixed for scanning electron microscopy (SEM). Results. All dental implants were covered by a fibrin mesh. However, noticeable noncontact areas were observed for the Osseospeed™, TiUnite™, and SLActive® surfaces. On the other hand, Ossean® and Plenum® surfaces showed a dense and uniform layer of fibrin covering almost the entire implant surface. The Osseospeed™, TiUnite™, and SLActive® surfaces presented with lower blood cell numbers inside the fibrin mesh compared with the others. Moreover, at higher magnification, thicker fibrin fibers were observed in contact with Ossean® and Plenum® surfaces. The Plenum ®surface showed the thickest fibers which also inserted and interconnect to the microroughness. Conclusion. The initial contact between an implant surface and the fibrin network differs significantly among different implant brands. Further studies are necessary to explore the clinical impact of these observations in the osseointegration process of dental implants.

2021 ◽  
Vol 11 (12) ◽  
pp. 5324
Author(s):  
Maria Menini ◽  
Francesca Delucchi ◽  
Domenico Baldi ◽  
Francesco Pera ◽  
Francesco Bagnasco ◽  
...  

(1) Background: Intrinsic characteristics of the implant surface and the possible presence of endotoxins may affect the bone–implant interface and cause an inflammatory response. This study aims to evaluate the possible inflammatory response induced in vitro in macrophages in contact with five different commercially available dental implants. (2) Methods: one zirconia implant NobelPearl® (Nobel Biocare) and four titanium implants, Syra® (Sweden & Martina), Prama® (Sweden & Martina), 3iT3® (Biomet 3i) and Shard® (Mech & Human), were evaluated. After 4 h of contact of murine macrophage cells J774a.1 with the implants, the total RNA was extracted, transcribed to cDNA and the gene expression of the macrophages was evaluated by quantitative PCR (qPCR) in relation to the following genes: GAPDH, YWHAZ, IL1β, IL6, TNFα, NOS2, MMP-9, MMP-8 and TIMP3. The results were statistically analyzed and compared with negative controls. (3) Results: No implant triggered a significant inflammatory response in macrophages, although 3iT3 exhibited a slight pro-inflammatory effect compared to other samples. (4) Conclusions: All the samples showed optimal outcomes without any inflammatory stimulus on the examined macrophagic cells.


2021 ◽  
Vol 21 (01) ◽  
pp. 2150004
Author(s):  
MEHDI MASHHADI ◽  
REZA HAMZELOO ◽  
MEGHDAD FALLAH

Selecting materials and alloys, fabrication methods, surface characteristics and coatings, and topology design, all affect the mechanical properties, biocompatibility, and functionality of dental implants. The success in embedding implants in mouth and improving biocompatibility and consequently useful life of implants depends directly on proper adhesion of tissue to implant surface of a biocompatible alloy. In this research, experimental surface hardness and in vitro tests are carried out on samples with different alloys and different manufacturing methods. Various fabrication techniques, such as machining and 3D printing (Selective laser melting (SLM)), are considered for steel and titanium specimens. Results show that the hardness values of specimens made by the SLM method are higher than machined samples about 8% and also stainless steels samples have higher hardness than titanium specimens. A comparison of scanning electron microscopy (SEM) surface pictures indicates that applying modern fabrication methods for production which includes SLM improves the performance of implants in terms of mechanical and biocompatibility by increasing cell adhesion up to 21 times. In addition, results indicate that titanium alloys have almost 13% higher adhesion property than stainless steel and generally exhibit a higher balance of adhesion and cell growth.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Fadi N. Barrak ◽  
Siwei Li ◽  
Albert M. Muntane ◽  
Julian R. Jones

Abstract Background With increasing numbers of dental implants placed annually, complications such as peri-implantitis and the subsequent periprosthetic osteolysis are becoming a major concern. Implantoplasty, a commonly used treatment of peri-implantitis, aims to remove plaque from exposed implants and reduce future microbial adhesion and colonisation by mechanically modifying the implant surface topography, delaying re-infection/colonisation of the site. This in vitro study aims to investigate the release of particles from dental implants and their effects on human gingival fibroblasts (HGFs), following an in vitro mock implantoplasty procedure with a diamond burr. Materials and methods Commercially available implants made from grade 4 (commercially pure, CP) titanium (G4) and grade 5 Ti-6Al-4 V titanium (G5) alloy implants were investigated. Implant particle compositions were quantified by inductively coupled plasma optical emission spectrometer (ICP-OES) following acid digestion. HGFs were cultured in presence of implant particles, and viability was determined using a metabolic activity assay. Results Microparticles and nanoparticles were released from both G4 and G5 implants following the mock implantoplasty procedure. A small amount of vanadium ions were released from G5 particles following immersion in both simulated body fluid and cell culture medium, resulting in significantly reduced viability of HGFs after 10 days of culture. Conclusion There is a need for careful evaluation of the materials used in dental implants and the potential risks of the individual constituents of any alloy. The potential cytotoxicity of G5 titanium alloy particles should be considered when choosing a device for dental implants. Additionally, regardless of implant material, the implantoplasty procedure can release nanometre-sized particles, the full systemic effect of which is not fully understood. As such, authors do not recommend implantoplasty for the treatment of peri-implantitis.


2020 ◽  
Vol 8 (4) ◽  
pp. 109
Author(s):  
Ehsan Chegeni ◽  
Antonio España-Tost ◽  
Rui Figueiredo ◽  
Eduard Valmaseda-Castellón ◽  
Josep Arnabat-Domínguez

Peri-implant diseases are one of the main complications of dental implants. There are no well-established guidelines regarding laser parameters for implant decontamination. The aim was to compare two different settings of irradiation of the Er,Cr:YSGG laser on dental implants regarding surface alterations and determine the best settings for less damage on the surface. An in vitro study was performed and 30 areas of dental implants were irradiated with two different regimes of energy per pulse 50 and 84 mJ (1.5 W/30 Hz and 2.5 W/30 Hz). A total of 30 sites of implants were irradiated with three different tips (10 surfaces per tip): conical (RTF3-17 mm), side firing (SFT8-18 mm) and cylindrical (MGG6-6 mm). The following descriptive classification on surface damage was employed: no damage (class A), minimal effects (class B), metal fall with melting (class C), and destruction with carbonization (class D). The assessment was made through a descriptive scanning electron microscope (SEM) analysis. Side firing and conical tips at 50 mJ were classified as class A. Side firing at 84 mJ and cylindrical tips 50 mJ and 84 mJ were classified as class B. Finally, class C defects were found in the areas where the conical tip was used at 84 mJ. Side firing and conical tips at 50 mJ do not seem to damage the implant surface.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Luigi Laino ◽  
Marcella La Noce ◽  
Luca Fiorillo ◽  
Gabriele Cervino ◽  
Ludovica Nucci ◽  
...  

In the field of biology and medicine, one hears often about stem cells and their potential. The dental implant new surfaces, subjected to specific treatments, perform better and allow for quicker healing times and better clinical performance. The purpose of this study is to evaluate from a biological point of view the interaction and cytotoxicity between stem cells derived from dental pulp (DPSCs) and titanium surfaces. Through the creation of complex cells/implant, this study is aimed at analyzing the cytotoxicity of dental implant surfaces (Myth (Maipek Manufacturer Industrial Care, Naples, Italy)) and the adhesion capacity of cells on them and at considering the essential factors for implant healing such as osteoinduction and vasculogenesis. These parameters are pointed out through histology (3D cell culture), immunofluorescence, proliferation assays, scanning electron microscopy, and PCR investigations. The results of the dental implant surface and its interaction with the DPSCs are encouraging, obtaining results increasing the mineralization of the tissues. The knowledge of this type of interaction, highlighting its chemical and biological features, is certainly also an excellent starting point for the development of even more performing surfaces for having better healing in the oral surgical procedures related to dental implant positioning.


2021 ◽  
Vol 165 ◽  
pp. 39
Author(s):  
Francesca Lombardi ◽  
Silvano Santini ◽  
Paola Palumbo ◽  
Valeria Cordone ◽  
Virginio Bignotti ◽  
...  

2020 ◽  
Vol 11 (3) ◽  
pp. 10690-10702

Surface properties, including morphology, submicron morphology, and surface chemistry, are essential factors that affect the quality and manner of biological responses at the site of tissue contact with the implant, affecting the bone healing process. In this in vitro study, morphology and biocompatibility of nitinol (NiTi) memory alloy surfaces mechanically polished and modified with a chemical solution consisting of three types of acid (HCl-HF-H3PO4) and then chemical operations in solution (HNO3 and HCl) with a Volumetric scale of 1:1 and examined at ambient temperature. 75 samples were used for surface chemical modification, biological evaluations, and surface roughness, and also 9 samples as control. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and nitinol alloy (NiTi) surface roughness measurements were performed to analyze the surfaces. Besides, MG-63 cells were cultured on different nitinol alloy levels to evaluate adhesion and cell growth and proliferation. Data were analyzed using t-test and one-way analysis of variance. The results show that the chemical surface modification operation with two-stage acid solution had a higher roughness compared to the unmodified surfaces and the surface chemical modification operation with the acidic solution with an only solution consisting of (HCl-HF-H3PO4). Cell culture evaluations also showed that the two-stage modified nitinol levels showed significant cell adhesion and significant growth and proliferation compared to the tertiary acid-modified and unmodified levels. The surface chemical modification method for nitinol alloy can change the surface chemistry and change the surface morphology and create sub-micron scale roughness. This can increase the connectivity of the implant tissue and reduce the toxic effect of nickel.


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2602
Author(s):  
Aslihan Secgin-Atar ◽  
Gokce Aykol-Sahin ◽  
Necla Asli Kocak-Oztug ◽  
Funda Yalcin ◽  
Aslan Gokbuget ◽  
...  

The aim of our study was to obtain similar surface properties and elemental composition to virgin implants after debridement of contaminated titanium implant surfaces covered with debris. Erbium-doped:yttrium, aluminum, and garnet (Er:YAG) laser, erbium, chromium-doped:yttrium, scandium, gallium, and garnet (Er,Cr:YSGG) laser, curette, and ultrasonic device were applied to contaminated implant surfaces. Scanning electron microscopy (SEM) images were taken, the elemental profile of the surfaces was evaluated with energy dispersive X-ray spectroscopy (EDX), and the surface roughness was analyzed with profilometry. Twenty-eight failed implants and two virgin implants as control were included in the study. The groups were designed accordingly; titanium curette group, ultrasonic scaler with polyetheretherketone (PEEK) tip, Er: YAG very short pulse laser group (100 μs, 120 mJ/pulse 10 Hz), Er: YAG short-pulse laser group (300 μs, 120 mJ/pulse, 10 Hz), Er: YAG long-pulse laser group (600 μs, 120 mJ/pulse, 10 Hz), Er, Cr: YSGG1 laser group (1 W 10 Hz), Er, Cr: YSGG2 laser group (1.5 W, 30 Hz). In each group, four failed implants were debrided for 120 s. When SEM images and EDX findings and profilometry results were evaluated together, Er: YAG long pulse and ultrasonic groups were found to be the most effective for debridement. Furthermore, the two interventions have shown the closest topography of the sandblasted, large grit, acid-etched implant surface (SLA) as seen on virgin implants.


Antibiotics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 84 ◽  
Author(s):  
Anna Brandtner ◽  
Mirjam Bachler ◽  
Dietmar Fries ◽  
Martin Hermann ◽  
Jacqueline Ruehlicke ◽  
...  

Tigecycline offers broad anti-bacterial coverage for critically ill patients with complicated infections. A described but less researched side effect is coagulopathy. The aim of this study was to test whether tigecycline interferes with fibrinogen polymerization by peripheral interactions. To study the effect of unmetabolized tigecycline, plasma of healthy volunteers were spiked with increasing concentrations of tigecycline. In a second experimental leg, immortalized human liver cells (HepG2) were treated with the same concentrations to test an inhibitory effect of hepatic tigecycline metabolites. Using standard coagulation tests, only the activated thromboplastin time in humane plasma was prolonged with increasing concentrations of tigecycline. Visualization of the fibrin network using confocal live microscopy demonstrated a qualitative difference in tigecycline treated experiments. Thrombelastometry and standard coagulation tests did not indicate an impairment of coagulation. Although the discrepancy between functional and immunologic fibrinogen levels increased in cell culture assays with tigecycline concentration, fibrinogen levels in spiked plasma samples did not show significant differences determined by functional versus immunologic methods. In our in vitro study, we excluded a direct effect of tigecycline in increasing concentrations on blood coagulation in healthy adults. Furthermore, we demonstrated a rapid loss of mitochondrial activity in hepatic cells with supra-therapeutic tigecycline dosages.


2017 ◽  
Vol 30 (2) ◽  
pp. 133-135 ◽  
Author(s):  
Stefan Rues ◽  
Melissa Fugina ◽  
Peter Rammelsberg ◽  
Stefanie Kappel

Sign in / Sign up

Export Citation Format

Share Document