scholarly journals Online Prognosis of Bimodal Crack Evolution for Fatigue Life Prediction of Composite Laminates Using Particle Filters

2021 ◽  
Vol 11 (13) ◽  
pp. 6046
Author(s):  
Karkulali Pugalenthi ◽  
Pham Luu Trung Duong ◽  
Jaehyeok Doh ◽  
Shaista Hussain ◽  
Mark Hyunpong Jhon ◽  
...  

Composite materials are extensively used in aircraft structures, wherein they are subjected to cyclic loads and subsequently impact-induced damages. Progressive fatigue degradation can lead to catastrophic failure. This highlights the need for an efficient prognostic framework to predict crack propagation in the field of structural health monitoring (SHM) of composite structures to improve functional safety and reliability. However, achieving good accuracy in crack growth prediction is challenging due to uncertainties in the material properties, loading conditions, and environmental factors. This paper presents a particle-filter-based online prognostic framework for damage prognosis of composite laminates due to crack-induced delamination and fiber breakage. An optimized Paris law model is used to describe the damage propagation in glass-fiber-reinforced polymer (GFRP) laminates subject to low-velocity impacts. Our proposed methodology deduces the jump energy/inflection point online wherein the damage growth switches from rapid degradation to slow degradation. The prediction results obtained are compared with the conventional Paris law model to validate the need for an optimized bimodal crack growth propagation model. The root mean square error (RMSE) and remaining useful life (RUL) prediction errors are used as the prognostic metrics.

2011 ◽  
Vol 326 ◽  
pp. 37-52 ◽  
Author(s):  
Hassan Ijaz ◽  
M Aurangzeb Khan ◽  
Waqas Saleem ◽  
Sajid Raza Chaudry

This paper presents the mathematical modelling of fatigue damage able to carry out simulation of evolution of delamination in the laminated composite structures under cyclic loadings. A new elastic fatigue damage evolution law is proposed here. A classical interface damage evolution law, which is commonly used to predict static debonding process, is modified further to incorporate fatigue delamination effects due to high cycle loadings. The proposed fatigue damage model is identified using Fracture Mechanics tests like DCB, ENF and MMB. Simulations of delamination under fatigue loading are performed and results are successfully compared with reported experimental data on HTA/6376C unidirectional material. Delamination crack growth with variable fatigue amplitude is also performed and simulation results show that the proposed fatigue damage law can also accommodate this variable amplitude phenomenon. A study of crack tip behaviour using damage variable evolution is also carried out in this paper. Finally the effect of mesh density on crack growth is also discussed.


2018 ◽  
Vol 52 (25) ◽  
pp. 3471-3489 ◽  
Author(s):  
Marco S. Pigazzini ◽  
Yuri Bazilevs ◽  
Andrew Ellison ◽  
Hyonny Kim

The increasing popularity of composite materials in aerospace applications is creating the need for a new class of predictive methods and tools for the simulation of progressive damage in laminated fiber-reinforced composite structures. The unique challenges associated with modeling damage in these structures may be addressed by means of thin-shell formulations which are naturally developed in the context of Isogeometric Analysis. In this paper, we further validate our recently developed Isogeometric Analysis-based multi-layer shell model for progressive damage simulations using experimental data for low-velocity impact on a 24-ply flat panel. The validation includes a careful comparison of delamination and matrix damage patterns predicted by the Isogeometric Analysis-based simulation and those obtained from post-impact non-destructive evaluation of the damaged coupon. The Isogeometric Analysis-based formulation is then deployed on two additional examples: a stiffened panel and a full-scale UAV wing, to demonstrate its suitability for, and ease of application to, typical aerospace composite structures.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6103
Author(s):  
Guan Lu ◽  
Yuchen Zhou ◽  
Yiming Xu

Variable thickness composite laminates (VTCL) are susceptible to impact during use and may result in irreparable internal damage. In order to locate the internal impact damage of complex composite structures and monitor the impact signals of VTCL at the same time, a low velocity impact (LVI) monitoring system based on an optical fiber sensing network was constructed. Fiber Bragg grating (FBG) sensors are suitable for monitoring strain characteristics. By arranging FBG sensors on the laminate, we studied the spectrum analysis and localization of the impact signal collected by a FBG demodulator at constant temperature. The prior knowledge of variable thickness composite structures is difficult to obtain, and the multi-sensor dynamic monitoring is complex and difficult to realize. In order to locate the LVI of composite structures without prior knowledge, based on empirical mode decomposition (EMD), we proposed an impact localization method with zero-mean normalized cross-correlation (ZNCC) and thickness correction. The experimental results of LVI localization verification show that the ZNCC algorithm can effectively remove the temperature cross-sensitivity and impact energy influencing factors, and the thickness correction can reduce the interference of variable thickness characteristics on localization performance . The maximum localization error is 24.41 mm and the average error is 15.67 mm, which meets engineering application requirements. The method of variable-thickness normalization significantly improves impact localization performance for VTCL.


2014 ◽  
Vol 627 ◽  
pp. 353-356
Author(s):  
Z. Shen ◽  
Y.G. Xu ◽  
Andreas Chrysanthou

A major concern affecting the efficient use of carbon fibre reinforced composite laminates in the aerospace industry is the low velocity impact damage which may be introduced accidentally during manufacture, operation or maintenance of the composite structures. It is widely reported that the contact behavior of composite laminates under low-velocity impact can be obtained under quasi-static loading conditions. This paper focuses on the study of the correlation of the dent depth to the maximum contact force and damage of composite laminates under quasi-static loading. Analytical and finite element simulation approaches were employed to investigate relations between the contact force and the dent depth. Experimental investigations on the correlation between dent depth, maximum contact force and damage include quasi-static indentation testing, optical and scanning electron microscopic examination of the damage under different loading levels. The effect of damage initiation and growth on the contact behaviour has been discussed. Results show that consistent correlations between the dent depth, maximum contact force and damage exist and can be predicted with the analytical and numerical approaches. Dent depth can be used as an engineering parameter in assessing the severity of damage for composite structures that are subjected to low-velocity impact. This may lead to the development of a cost-effective technique for the inspection and maintenance of composite structures in aerospace applications.


2011 ◽  
Vol 22 (17) ◽  
pp. 2061-2067 ◽  
Author(s):  
Cristobal Hiche ◽  
Clyde K. Coelho ◽  
Aditi Chattopadhyay

Automated detection of damage due to low energy impacts in composite structures is very important for aerospace structural health monitoring applications. Low-velocity impact creates subsurface damage that can significantly reduce the stiffness of a component, yet show barely visible damage. This article proposes a novel methodology for impact localization based on the maximum strain amplitude measured by fiber Bragg grating (FBG) sensors during an impact event. The approach correlates the strain amplitude of each sensor pair to find the location of highest strain corresponding to the impact location. This approach requires minimal knowledge of the structure and fewer number of sensors as opposed to current localization methods. Both simulation and experimental data are used as proof of concept. Since FBG sensors measure strain in only one direction, the effect of sensor orientation on the performance of the algorithm is also studied. The algorithm is tested on graphite/epoxy composite plates and shows good localization results in all impact cases considered.


Author(s):  
Hussein Dalfi

Advanced composite laminates (i.e. glass composite laminates) are highly susceptible to low velocity impact, and the induced damage failures substantially reduced their residual mechanical properties and safe-service life during their application. Therefore, experiments and simulation efforts to predict their low-velocity impact damages and energy absorbing have significant importance in composite structures design. In this regards, experimental and finite element analysis (FEA) with aiding Abaqus software were respectively performed to investigate the influence of yarn hybridisation on the response of composite laminates under low velocity impact. The hybrid yarns, which consisted of S-glass and polypropylene yarns have been used to manufacture two types of composites; non-crimp cross-ply hybrid yarns and twill hybrid fabric composites. Additionally, for comparison, the non-crimp cross-ply and twill fabric composite laminates have been made from glass fibres only. The vacuum infusion resin process has been adopted to manufacture these composite laminates. The impact performance of composite laminates has been investigated using low-velocity impact at 15 J, 35, and 50 impact energy levels. The numerical analysis was executed using Abaqus/Explicit and Hashin failure criteria and continuum damage mechanics by using homogenous shell were adopted to simulate the intra-laminar damage in layers. Meanwhile, standard cohesive inter-laminar interfaces that inserted between composite layers with quadratic stress failure criteria have been used to model delamination failures. The numerical results regarding impact force-time, displacement–time and energy-time histories plots, as well as the damage evolution behaviour of matrix crack and fibre fracture, presented an agreement with experimental results.


2018 ◽  
Vol 52 (25) ◽  
pp. 3415-3427 ◽  
Author(s):  
Lorianne K Batte ◽  
Rani W Sullivan ◽  
Vipul Ranatunga ◽  
Kevin Brown

This study investigates the feasibility of using embedded optical fibers in polymer matrix composite laminates to characterize delaminations caused by low-velocity impacts with energies between 30 J and 50 J. Impact damage can occur in composite structures during manufacture, in-service, storage and routine maintenance. Because of their small size and light weight, optical fibers can be embedded in composite structures during the manufacture of composite parts, allowing the structure to be monitored for impact-induced delaminations without being removed from service. In this study, optical fibers are embedded in a grid configuration at four selected locations (one-third from impact surface, midplane, two-thirds from impact surface, and farthest ply from impact) in thick autoclave-cured graphite/epoxy laminates. Low-velocity impact testing is performed at four energy levels. Manufacturing procedures for embedding the optical fibers within the composite laminates are investigated. The strain distribution from the optical fibers is correlated with ultrasonic C-scans of the laminates in which they are embedded. X-ray computed tomography scan images are also compared to those from ultrasonic C-scans. Results indicate that embedded optical fibers can provide post-impact strain responses and delamination area from each embedded site within the impacted laminates.


2021 ◽  
pp. 002199832110476
Author(s):  
Ilaria Papa ◽  
Federica Donadio ◽  
Vicente Sánchez Gálvez ◽  
Valentina Lopresto

A demand raised is how to improve the survivability of aircraft and naval structures concerning low- and high-velocity impacts. Since fundamental failure is due to mainly by fracture, a fundamental understanding of both mechanisms and mechanics of the material is crucial. It is important to understand the deformation and damage mechanisms involved in the impact to improve the design of composite structures. Several approaches have been exploited to improve the impact damage resistance of composite laminates in different conditions. Among these, the development of composite laminates stacking different fibres in the same matrix results very interestingly. This paper deals to investigate on the high and low speed impact performance of hybrid composite configurations made of glass/carbon and basalt fibres. Low-velocity impact at penetration and high speed tests at different impact velocity were carried out at the room and low temperatures to evaluate the goodness of hybridization proposed and the temperature effect on the composite performances. Among the three proposals, a hybrid basalt carbon configuration was identified as the best both at low speeds and at high impact speeds for both temperatures tested.


2009 ◽  
Vol 76 (5) ◽  
pp. 715-727 ◽  
Author(s):  
Robert P. Wei ◽  
Christopher Miller ◽  
Zhifan Huang ◽  
Gary W. Simmons ◽  
D. Gary Harlow

Sign in / Sign up

Export Citation Format

Share Document