scholarly journals Theoretical and Numerical Solution for the Bending and Frequency Response of Graphene Reinforced Nanocomposite Rectangular Plates

2021 ◽  
Vol 11 (14) ◽  
pp. 6331
Author(s):  
Mehran Safarpour ◽  
Ali Forooghi ◽  
Rossana Dimitri ◽  
Francesco Tornabene

In this work, we study the vibration and bending response of functionally graded graphene platelets reinforced composite (FG-GPLRC) rectangular plates embedded on different substrates and thermal conditions. The governing equations of the problem along with boundary conditions are determined by employing the minimum total potential energy and Hamilton’s principle, within a higher-order shear deformation theoretical setting. The problem is solved both theoretically and numerically by means of a Navier-type exact solution and a generalized differential quadrature (GDQ) method, respectively, whose results are successfully validated against the finite element predictions performed in the commercial COMSOL code, and similar outcomes available in the literature. A large parametric study is developed to check for the sensitivity of the response to different foundation properties, graphene platelets (GPL) distribution patterns, volume fractions of the reinforcing phase, as well as the surrounding environment and boundary conditions, with very interesting insights from a scientific and design standpoint.

2020 ◽  
Vol 26 (19-20) ◽  
pp. 1627-1645 ◽  
Author(s):  
Alireza Rahimi ◽  
Akbar Alibeigloo ◽  
Mehran Safarpour

Because of promoted thermomechanical performance of functionally graded graphene platelet–reinforced composite ultralight porous structural components, this article investigates bending and free vibration behavior of functionally graded graphene platelet–reinforced composite porous cylindrical shell based on the theory of elasticity. Effective elasticity modulus of the composite is estimated with the aid of modified version of Halpin–Tsai micromechanics. Rule of mixtures is used to obtain mass density and Poisson’s ratio of the graphene platelet–reinforced composite shell. An analytical solution is introduced to obtain the natural frequencies and static behavior of simply supported cylindrical shell by applying the state-space technique along the radial coordinate and Fourier series expansion along the circumferential and axial direction. In addition, differential quadrature method is used to explore the response of the cylindrical shell in the other cases of boundary conditions. Validity of the applied approach is examined by comparing the numerical results with those published in the available literature. A comprehensive parametric study is conducted on the effects of different combinations of graphene platelets distribution patterns and porosity distribution patterns, boundary conditions, graphene platelets weight fraction, porosity coefficient, and geometry of the shell (such as mid-radius to thickness ratio and length to mid-radius ratio) on the bending and free vibration behavior of the functionally graded graphene platelet–reinforced composite porous cylindrical shell. The results of this study provide useful practical tips for engineers designing composite structures.


Author(s):  
Amin Ghorbani Shenas ◽  
Parviz Malekzadeh ◽  
Sima Ziaee

This work presents an investigation on the free vibration behavior of rotating pre-twisted functionally graded graphene platelets reinforced composite (FG-GPLRC) laminated blades/beams with an attached point mass. The considered beams are constituted of [Formula: see text] layers which are bonded perfectly and made of a mixture of isotropic polymer matrix and graphene platelets (GPLs). The weight fraction of GPLs changes in a layer-wise manner. The effective material properties of FG-GPLRC layers are computed by using the modified Halpin-Tsai model together with rule of mixture. The free vibration eigenvalue equations are developed based on the Reddy’s third-order shear deformation theory (TSDT) using the Chebyshev–Ritz method under different boundary conditions. After validating the approach, the influences of the GPLs distribution pattern, GPLs weight fraction, angular velocity, the variation of the angle of twist along the beam axis, the ratio of attached mass to the beam mass, boundary conditions, position of attached mass, and geometry on the vibration behavior are investigated. The findings demonstrate that the natural frequencies of the rotating pre-twisted FG-GPLRC laminated beams significantly increases by adding a very small amount of GPLs into polymer matrix. It is shown that placing more GPLs near the top and bottom surfaces of the pre-twisted beam is an effective way to strengthen the pre-twisted beam stiffness and increase the natural frequencies.


Author(s):  
Nastaran Shahmansouri ◽  
Mohammad Mohammadi Aghdam ◽  
Kasra Bigdeli

The present study investigates static analyses of moderately thick FG plates. Using the First Order Shear Deformation Theory (FSDT), functionally graded plates subjected to transversely distributed loading with various boundary conditions are studied. Effective mechanical properties which vary from one surface of the plate to the other assumed to be defined by a power law form of distribution. Different ceramic-metal sets of materials are studied. Solution of the governing equations, including five equilibrium and eight constitutive equations, is obtained by the Extended Kantorovich Method (EKM). The system of thirteen Partial Differential Equations (PDEs) in terms of displacements, rotations, force and moment resultants are considered as multiplications of separable function of independent variables x and y. Then by successful utilization of the EKM these equations are converted to a double set of ODE systems in terms of x and y. The obtained ODE systems are then solved iteratively until final convergence is achieved. Closed form solution is presented for these ODE sets. It is shown that the method is very stable and provides fast convergence and highly accurate predictions for both thin and moderately thick plates. Comparison of the normal stresses at various points of rectangular plates and deflection of mid-point of the plate are presented and compared with available data in the literature. The effects of the volume fraction exponent n on the behavior of the normalized deflection, moment resultants and stresses of FG plates are also studied. To validate data for analysis fully clamped FG plates, another analysis was carried out using finite element code ANSYS. Close agreement is observed between predictions of the EKM and ANSYS.


2021 ◽  
Vol 11 (21) ◽  
pp. 10434
Author(s):  
Faraz Kiarasi ◽  
Masoud Babaei ◽  
Kamran Asemi ◽  
Rossana Dimitri ◽  
Francesco Tornabene

The present work studies the buckling behavior of functionally graded (FG) porous rectangular plates subjected to different loading conditions. Three different porosity distributions are assumed throughout the thickness, namely, a nonlinear symmetric, a nonlinear asymmetric and a uniform distribution. A novel approach is proposed here based on a combination of the generalized differential quadrature (GDQ) method and finite elements (FEs), labeled here as the FE-GDQ method, while assuming a Biot’s constitutive law in lieu of the classical elasticity relations. A parametric study is performed systematically to study the sensitivity of the buckling response of porous structures, to different input parameters, such as the aspect ratio, porosity and Skempton coefficients, along with different boundary conditions (BCs) and porosity distributions, with promising and useful conclusions for design purposes of many engineering structural porous members.


Author(s):  
Zhicheng Yang ◽  
Meifung Tam ◽  
Yingyan Zhang ◽  
Sritawat Kitipornchai ◽  
Jiangen Lv ◽  
...  

This paper presents a numerical investigation on the nonlinear dynamic response of multilayer functionally graded graphene platelets reinforced composite (FG-GPLRC) beam with open edge cracks in thermal environment. It is assumed that graphene platelets (GPLs) in each GPLRC layer are uniformly distributed and randomly oriented with its concentration varying layer-wise along the thickness direction. The effective material properties of each GPLRC layer are predicted by Halpin-Tsai micromechanics-based model. Finite element method is employed to calculate the dynamic response of the cracked FG-GPLRC beam. It is found that the maximum dynamic deformation of the cracked FG-GPLRC beam under dynamic loading is quite sensitive to the crack location and grows with an increase in the crack depth ratio (CDR) and temperature rise. The influences of GPL distribution, concentration, geometry as well as the boundary conditions on the dynamic response characteristics of cracked FG-X-GPLRC beams are also investigated comprehensively.


2020 ◽  
Vol 10 (14) ◽  
pp. 4695
Author(s):  
Dongying Liu ◽  
Jing Sun ◽  
Linhua Lan

In-plane free vibration of functionally graded graphene platelets reinforced nanocomposites (FG-GPLRCs) circular arches is investigated by using the two-dimensional theory of elasticity. The graphene platelets (GPLs) are dispersed along the thickness direction non-uniformly, and the material properties of the nanocomposites are evaluated by the modified Halpin-Tsai multi-scaled model and the rule of mixtures. A state-space method combined with differential quadrature technique is employed to derive the governing equation for in-plane free vibration of FG-GPLRCs circular arch, the semi-analytical solutions are obtained for various end conditions. An exact solution of FG-GPLRCs circular arch with simply-supported ends is also presented as a benchmark to valid the present numerical method. Numerical examples are performed to study the effects of GPL distribution patterns, weight fraction and dimensions, geometric parameters and boundary conditions of the circular arch on the natural frequency in details.


2018 ◽  
Vol 18 (10) ◽  
pp. 1850123 ◽  
Author(s):  
Hamed Safarpour ◽  
Kianoosh Mohammadi ◽  
Majid Ghadiri ◽  
Mohammad M. Barooti

This article investigates the flexural vibration of temperature-dependent and carbon nanotube-reinforced (CNTR) cylindrical shells made of functionally graded (FG) porous materials under various kinds of thermal loadings. The equivalent material properties of the cylindrical shell of concern are estimated using the rule of mixture. Both the cases of uniform distribution (UD) and FG distribution patterns of reinforcements are considered. Thermo-mechanical properties of the cylindrical shell are supposed to vary through the thickness and are estimated using the modified power-law rule, by which the porosities with even and uneven types are approximated. As the porosities occur inside the FG materials during the manufacturing process, it is necessary to consider their impact on the vibration behavior of shells. The present study is featured by consideration of different types of porosities in various CNT reinforcements under various boundary conditions in a single model. The governing equations and boundary conditions are developed using Hamilton's principle and solved by the generalized differential quadrature method. The accuracy of the present results is verified by comparison with existing ones and those by Navier's method. The results show that the length to radius ratio and temperature, as well as CNT reinforcement, porosity, thermal loading, and boundary conditions, play an important role on the natural frequency of the cylindrical shell of concern in thermal environment.


2019 ◽  
Vol 29 (11) ◽  
pp. 1950148 ◽  
Author(s):  
Aiwen Wang ◽  
Youqing Pang ◽  
Wei Zhang ◽  
Pengcheng Jiang

Functionally graded (FG) graphene reinforced composite (GRC) is a new class of advanced composite materials. In GRC, several layers of graphene platelets (GPLs) are randomly or uniformly dispersed in matrix. These GPLs have uniform arrangement, or are arranged with gradient, in the direction of thickness in accordance with three different graphene distribution rules. In this study, the nonlinear dynamic analysis of FG GRC truncated conical shells, subjected to a combined action of transverse excitation and axial force, is performed using the first shear deformation theory (FSDT). Estimation of equivalent Young’s modulus of the composites is calculated using a modified Halpin–Tsai model. In addition, a partial differential equation model is developed based on the Hamilton principle and nonlinear strain-displacement relationship. The Galerkin method and the fourth-order Runge–Kutta method are used to solve the equation. The dimensionless linear natural frequency of an FG GRC truncated conical shell is calculated by the Rayleigh–Ritz method and compared with available results in the literature to verify the accuracy of the present model. Simultaneously, significant effects of the different parameters, such as the total layer numbers, semi-vertex angles, GPLs weight fractions, distribution patterns and the length-to-thickness ratios, on the nonlinear dynamics including bifurcation and chaos of FG GRC truncated conical shells are investigated.


2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
F. Tornabene ◽  
S. Brischetto ◽  
N. Fantuzzi ◽  
M. Bacciocchi

The cylindrical bending condition for structural models is very common in the literature because it allows an incisive and simple verification of the proposed plate and shell models. In the present paper, 2D numerical approaches (the Generalized Differential Quadrature (GDQ) and the finite element (FE) methods) are compared with an exact 3D shell solution in the case of free vibrations of functionally graded material (FGM) plates and shells. The first 18 vibration modes carried out through the 3D exact model are compared with the frequencies obtained via the 2D numerical models. All the 18 frequencies obtained via the 3D exact model are computed when the structures have simply supported boundary conditions for all the edges. If the same boundary conditions are used in the 2D numerical models, some modes are missed. Some of these missed modes can be obtained modifying the boundary conditions imposing free edges through the direction perpendicular to the direction of cylindrical bending. However, some modes cannot be calculated via the 2D numerical models even when the boundary conditions are modified because the cylindrical bending requirements cannot be imposed for numerical solutions in the curvilinear edges by definition. These features are investigated in the present paper for different geometries (plates, cylinders, and cylindrical shells), types of FGM law, lamination sequences, and thickness ratios.


Sign in / Sign up

Export Citation Format

Share Document