scholarly journals A Method of Defect Depth Recognition in Active Infrared Thermography Based on GRU Networks

2021 ◽  
Vol 11 (14) ◽  
pp. 6387
Author(s):  
Li Xu ◽  
Jianzhong Hu

Active infrared thermography (AIRT) is a significant defect detection and evaluation method in the field of non-destructive testing, on account of the fact that it promptly provides visual information and that the results could be used for quantitative research of defects. At present, the quantitative evaluation of defects is an urgent problem to be solved in this field. In this work, a defect depth recognition method based on gated recurrent unit (GRU) networks is proposed to solve the problem of insufficient accuracy in defect depth recognition. AIRT is applied to obtain the raw thermal sequences of the surface temperature field distribution of the defect specimen. Before training the GRU model, principal component analysis (PCA) is used to reduce the dimension and to eliminate the correlation of the raw datasets. Then, the GRU model is employed to automatically recognize the depth of the defect. The defect depth recognition performance of the proposed method is evaluated through an experiment on polymethyl methacrylate (PMMA) with flat bottom holes. The results indicate that the PCA-processed datasets outperform the raw temperature datasets in model learning when assessing defect depth characteristics. A comparison with the BP network shows that the proposed method has better performance in defect depth recognition.

Author(s):  
Qiang Fang ◽  
farima abdollahi-mamoudan ◽  
Xavier Maldague

Infrared thermography has already been proven to be a significant method in non-destructive evaluation since it gives information with immediacy, rapidity, and low cost. However, the thorniest issue for the wider application of IRT is quantification. In this work, we proposed a specific depth quantifying technique by employing the Gated Recurrent Units (GRU) in composite material samples via pulsed thermography (PT). Finite Element Method (FEM) modeling provides the economic examination of the response pulsed thermography. In this work, Carbon Fiber Reinforced Polymer (CFRP) specimens embedded with flat bottom holes are stimulated by a FEM modeling (COMSOL) with precisely controlled depth and geometrics of the defects. The GRU model automatically quantified the depth of defects presented in the stimulated CFRP material. The proposed method evaluated the accuracy and performance of synthetic CFRP data from FEM for defect depth predictions.


2020 ◽  
Vol 10 (19) ◽  
pp. 6819 ◽  
Author(s):  
Qiang Fang ◽  
Xavier Maldague

Infrared thermography has already been proven to be a significant method in non-destructive evaluation since it gives information with immediacy, rapidity, and low cost. However, the thorniest issue for the wider application of IRT is quantification. In this work, we proposed a specific depth quantifying technique by employing the Gated Recurrent Units (GRUs) in composite material samples via pulsed thermography (PT). Finite Element Method (FEM) modeling provides the economic examination of the response pulsed thermography. In this work, Carbon Fiber Reinforced Polymer (CFRP) specimens embedded with flat bottom holes are stimulated by a FEM modeling (COMSOL) with precisely controlled depth and geometrics of the defects. The GRU model automatically quantified the depth of defects presented in the stimulated CFRP material. The proposed method evaluated the accuracy and performance of synthetic CFRP data from FEM for defect depth predictions.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 533
Author(s):  
Tomáš Kostroun ◽  
Milan Dvořák

In this article, we examine the possibility of using active infrared thermography as a nontraditional, nondestructive evaluation method (NDE) for the testing of adhesive joints. Attention was focused on the load-bearing wing structure and related structural joints, specifically the adhesive joints of the wing spar caps and the skins on the wing demonstrator of a small sport aircraft made mainly of a carbon composite. The Pulse Thermography (PT) method, using flash lamps for optical excitation, was tested. The Modified Differential Absolute Contrast (MDAC) method was used to process the measured data to reduce the effect of the heat source’s inhomogeneity and surface emissivity. This method demonstrated a very high ability to detect defects in the adhesive joints. The achieved results are easy to interpret and use for both qualitative and quantitative evaluation of the adhesive joints of thin composite parts.


Author(s):  
Qiang Fang ◽  
and Xavier. Maldague

Infrared thermography has already been proven to be a significant method in non-destructive evaluation since it gives information with immediacy, rapidity and low cost. However, the thorniest issue for wider application of IRT is the quantification. In this work, we proposed a specific depth quantifying technique by employing the Gated Recurrent Units (GRU) in composite material samples via pulsed thermography (PT). Carbon Fiber Reinforced Polymer(CFRP) embedded with flat bottom holes were designed via Finite Element Method (FEM) modeling in order to precisely control the depth and geometrics of the defects. The GRU model automatically quantified the depth of defects presented in the CFRP material. The proposed method evaluated the accuracy and performance of synthetic CFRP data from FEM for defect depth predictions.


Author(s):  
Qiang Fang ◽  
Xavier Maldague

Infrared thermography has already been proved to be a significant method in non-destructive evaluation since it gives information with immediacy, rapidity and low cost. However, the thorniest issue for wider application of IRT is the quantification. In this work, we proposed a specific depth quantifying technique by employing the Gated Recurrent Unites (GRU) in composite material samples via pulsed thermography (PT). Carbon Fiber Reinforced Polymer (CFRP) embedded with flat bottom holes were designed via Finite Element Method (FEM) modeling in order to precisely control the depth and geometrics of the defects. The GRU model automatically quantify the depth of defects presented in the Plexiglasses materials. The proposed evaluated the accuracy and performance of synthetic plexiglasses data from FEM for defect depth predictions.


Author(s):  
Shengsheng Qian ◽  
Jun Hu ◽  
Quan Fang ◽  
Changsheng Xu

In this article, we focus on fake news detection task and aim to automatically identify the fake news from vast amount of social media posts. To date, many approaches have been proposed to detect fake news, which includes traditional learning methods and deep learning-based models. However, there are three existing challenges: (i) How to represent social media posts effectively, since the post content is various and highly complicated; (ii) how to propose a data-driven method to increase the flexibility of the model to deal with the samples in different contexts and news backgrounds; and (iii) how to fully utilize the additional auxiliary information (the background knowledge and multi-modal information) of posts for better representation learning. To tackle the above challenges, we propose a novel Knowledge-aware Multi-modal Adaptive Graph Convolutional Networks (KMAGCN) to capture the semantic representations by jointly modeling the textual information, knowledge concepts, and visual information into a unified framework for fake news detection. We model posts as graphs and use a knowledge-aware multi-modal adaptive graph learning principal for the effective feature learning. Compared with existing methods, the proposed KMAGCN addresses challenges from three aspects: (1) It models posts as graphs to capture the non-consecutive and long-range semantic relations; (2) it proposes a novel adaptive graph convolutional network to handle the variability of graph data; and (3) it leverages textual information, knowledge concepts and visual information jointly for model learning. We have conducted extensive experiments on three public real-world datasets and superior results demonstrate the effectiveness of KMAGCN compared with other state-of-the-art algorithms.


2021 ◽  
Vol 13 (6) ◽  
pp. 1205
Author(s):  
Caidan Zhao ◽  
Gege Luo ◽  
Yilin Wang ◽  
Caiyun Chen ◽  
Zhiqiang Wu

A micro-Doppler signature (m-DS) based on the rotation of drone blades is an effective way to detect and identify small drones. Deep-learning-based recognition algorithms can achieve higher recognition performance, but they needs a large amount of sample data to train models. In addition to the hovering state, the signal samples of small unmanned aerial vehicles (UAVs) should also include flight dynamics, such as vertical, pitch, forward and backward, roll, lateral, and yaw. However, it is difficult to collect all dynamic UAV signal samples under actual flight conditions, and these dynamic flight characteristics will lead to the deviation of the original features, thus affecting the performance of the recognizer. In this paper, we propose a small UAV m-DS recognition algorithm based on dynamic feature enhancement. We extract the combined principal component analysis and discrete wavelet transform (PCA-DWT) time–frequency characteristics and texture features of the UAV’s micro-Doppler signal and use a dynamic attribute-guided augmentation (DAGA) algorithm to expand the feature domain for model training to achieve an adaptive, accurate, and efficient multiclass recognition model in complex environments. After the training model is stable, the average recognition accuracy rate can reach 98% during dynamic flight.


Sign in / Sign up

Export Citation Format

Share Document