scholarly journals Extreme Weather Events Affect Agronomic Practices and Their Environmental Impact in Maize Cultivation

2021 ◽  
Vol 11 (16) ◽  
pp. 7352
Author(s):  
Monika Marković ◽  
Jasna Šoštarić ◽  
Marko Josipović ◽  
Atilgan Atilgan

Sustainable and profitable crop production has become a challenge due to frequent weather extremes, where unstable crop yields are often followed by the negative impacts of agronomic practices on the environment, i.e., nitrate leaching in irrigated and nitrogen (N)-fertilized crop production. To study this issue, a three-year field study was conducted during quite different growing seasons in terms of weather conditions, i.e., extremely wet, extremely dry, and average years. Over three consecutive years, the irrigation and N fertilizers rates were tested for their effect on grain yield and composition, i.e., protein, starch, and oil content of the maize hybrids; soil N level (%); and nitrate leaching. The results showed that the impact of the tested factors and their significance was year- or weather-condition-dependent. The grain yield result stood out during the extremely wet year, where the irrigation rate reduced the grain yield by 7.6% due to the stress caused by the excessive amount of water. In the remainder of the study, the irrigation rate expectedly increased the grain yield by 13.9% (a2) and 20.8% (a3) in the extremely dry year and 22.7% (a2) and 39.5% (a3) during the average year. Regardless of the weather conditions, the N fertilizer rate increased the grain yield and protein content. The soil N level showed a typical pattern, where the maximum levels were at the beginning of the study period and were higher as the N fertilizer rate was increased. Significant variations in the soil N level were found between weather conditions (r = −0.719) and N fertilizer rate (r = 0.401). Nitrate leaching losses were expectedly found for irrigation and N fertilizer treatments with the highest rates (a3b3 = 79.8 mg NO3− L).

2014 ◽  
Vol 94 (1) ◽  
pp. 141-152 ◽  
Author(s):  
W. E. May ◽  
M. R. Fernandez ◽  
F. Selles ◽  
G. P. Lafond

May, W. E., Fernandez, M. R., Selles, F. and Lafond G. P. 2014. Agronomic practices to reduce leaf spotting and Fusarium kernel infections in durum wheat on the Canadian prairies. Can. J. Plant Sci. 94: 141–152. Fusarium head blight (FHB) has become an important disease of durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn] in the humid and sub-humid regions of the prairies along with leaf spots, black point and red smudge. Together, they contribute to lower grain yields and grain quality. The study objective was to determine the effect of seeding rate, nitrogen (N) fertilizer rate, fungicidal treatment, and cultivar on disease severity, crop development, grain yield and quality in durum. A four-way factorial design was used with two seeding rates (150 and 300 viable seeds m−2), two N rates (75 and 100% of recommended rate), three cultivars (AC Avonlea, AC Morse and AC Navigator), four fungicide treatments (no application, propiconazole at flag leaf, tebuconazole at anthesis, and propiconazole at flag leaf followed by tebuconazole at anthesis) and three locations (two in Saskatchewan and one in Manitoba) from 2001 to 2003. There were no interactions among fungicide, seeding rate, N fertilizer and cultivar for all measured variables. Foliar fungicide treatments resulted in greater kernel weight, grain yield and test weight than the no-fungicide treatment. The application of tebuconazole at anthesis did not reduce the amount of FDK in the harvested grain. The application of a fungicide increased the percentage of kernels infected by black point from 0.38% to over 0.50% and red smudge from 0.54 to 0.61%. Two fungicide applications increased red smudge to 0.85%. Grain yield increased by 2.4% when the seeding rate was increased from 150 to 300 plants m−2. Increasing N fertilizer rate increased grain yield by 5.2%, protein concentration by 5.4% and hard vitreous kernels (HVK) by 2.6%, but decreased test weight by 0.5%. Cultivar selection had the largest effect on FDK. In conclusion, effects of a fungicide application on durum wheat did not interact with selection of seeding rates, cultivars or N rates used in this study.


2013 ◽  
Vol 37 (6) ◽  
pp. 1641-1650 ◽  
Author(s):  
Telmo Jorge Carneiro Amado ◽  
Enrique Oswin Hahn Villalba ◽  
Rafael Pivotto Bortolotto ◽  
Antônio Luis Santi ◽  
Enrique Asterio Benítez León ◽  
...  

In order to select soil management practices that increase the nitrogen-use efficiency (NUE) in agro-ecosystems, the different indices of agronomic fertilizer efficiency must be evaluated under varied weather conditions. This study assessed the NUE indices in no-till corn in southern Paraguay. Nitrogen fertilizer rates from 0 to 180 kg ha-1 were applied in a single application at corn sowing and the crop response investigated in two growing seasons (2010 and 2011). The experimental design was a randomized block with three replications. Based on the data of grain yield, dry matter, and N uptake, the following fertilizer indices were assessed: agronomic N-use efficiency (ANE), apparent N recovery efficiency (NRE), N physiological efficiency (NPE), partial factor productivity (PFP), and partial nutrient balance (PNB). The weather conditions varied largely during the experimental period; the rainfall distribution was favorable for crop growth in the first season and unfavorable in the second. The PFP and ANE indices, as expected, decreased with increasing N fertilizer rates. A general analysis of the N fertilizer indices in the first season showed that the maximum rate (180 kg ha-1) obtained the highest corn yield and also optimized the efficiency of NPE, NRE and ANE. In the second season, under water stress, the most efficient N fertilizer rate (60 kg ha-1) was three times lower than in the first season, indicating a strong influence of weather conditions on NUE. Considering that weather instability is typical for southern Paraguay, anticipated full N fertilization at corn sowing is not recommended due the temporal variability of the optimum N fertilizer rate needed to achieve high ANE.


1992 ◽  
Vol 72 (4) ◽  
pp. 1049-1056 ◽  
Author(s):  
Zhengqi Chen ◽  
A. F. MacKenzie ◽  
M. A. Fanous

Optimum soybean (Glycine max (L) Merr.) production requires information on the interaction between cultivars, population densities and fertilizer nutrients as related to climate and region. Consequently, field experiments were conducted to determine the effects of N-fertilizer rate, plant population and cultivar on soybean nodulation and grain yield on two soils in southern Quebec. N-fertilizer application consistently depressed soybean nodulation, but it improved soybean growth where initial soil inorganic-N levels were low. High plant population densities had little effect on individual plant nodulation, but they increased fresh nodule mass per unit area. Grain yields were increased with high plant population densities. The two cultivars tested, Apache and Maple Arrow, generally produced similar grain yields on the Ste. Rosalie soil, where yields were low due to moisture stress or low initial inorganic-N levels. On the more productive Ormstown soil, Apache produced higher grain yields than Maple Arrow.Key words: Glycine max (L.) Merr., N fertilization, plant population, nodulation, grain yield


2021 ◽  
Vol 182 ◽  
pp. 105997
Author(s):  
Davide Cammarano ◽  
Bruno Basso ◽  
Jonathan Holland ◽  
Alberto Gianinetti ◽  
Marina Baronchelli ◽  
...  

2018 ◽  
Vol 43 (3) ◽  
pp. 243-260
Author(s):  
Nurudeen Abdul Rahman ◽  
Asamoah Larbi ◽  
Andrews Opoku ◽  
Francis Marthy Tetteh ◽  
Irmgard Hoeschle-Zeledon

2019 ◽  
Vol 157 (9-10) ◽  
pp. 693-700
Author(s):  
L. J. Chen ◽  
C. S. Li ◽  
Q. Feng ◽  
Y. P. Wei ◽  
Y. Zhao ◽  
...  

AbstractAlthough numerous studies have investigated the individual effects of salinity, irrigation and fertilization on soil microbial communities, relatively less attention has been paid to their combined influences, especially using molecular techniques. Based on the field of orthogonal designed test and deoxyribonucleic acid sequencing technology, the effects of saline water irrigation amount, salinity level of irrigation water and nitrogen (N) fertilizer rate on soil bacterial community structure were investigated. The results showed that the irrigation amount was the most dominant factor in determining the bacterial richness and diversity, followed by the irrigation water salinity and N fertilizer rate. The values of Chao1 estimator, abundance-based coverage estimator and Shannon indices decreased with an increase in irrigation amount while increased and then decreased with an increase in irrigation water salinity and N fertilizer rate. The highest soil bacterial richness and diversity were obtained under the least irrigation amount (25 mm), medium irrigation water salinity (4.75 dS/m) and medium N fertilizer rate (350 kg/ha). However, different bacterial phyla were found to respond distinctively to these three factors: irrigation amount significantly affected the relative abundances of Proteobacteria and Chloroflexi; irrigation water salinity mostly affected the members of Actinobacteria, Gemmatimonadetes and Acidobacteria; and N fertilizer rate mainly influenced the Bacteroidetes' abundance. The results presented here revealed that the assessment of soil microbial processes under combined irrigation and fertilization treatments needed to be more careful as more variable consequences would be established by comparing with the influences based on an individual factor, such as irrigation amount or N fertilizer rate.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 613e-614
Author(s):  
Laura Guazzelli ◽  
Frederick S. Davies ◽  
James J. Ferguson

Our objectives were to determine if leaf N concentration in citrus nursery trees affected subsequent growth responses to fertilization for the first 2 years after planting and how N fertilizer rate affected soil nitrate-N concentration. `Hamlin' orange [Citrus sinensis (L.) Osb.] trees on `Swingle' citrumelo rootstock [C. paradisi Macf. × P. trifoliata (L.) Raf.] were purchased from commercial nurseries and grown in the greenhouse at differing N rates. Three to five months later trees were separated into three groups (low, medium, high) based on leaf N concentration and planted in the field in Oct. 1992 (Expt. 1) or Apr. 1993 (Expt. 2). Trees were fertilized with granular material (8N–2.6P–6.6K) with N at 0 to 0.34 kg/tree yearly. Soil nitrate-N levels were also determined in Expt. 2. Preplant leaf N concentration in the nursery varied from 1.4% to 4.1% but had no effect on trunk diameter, height, shoot growth, and number or dry weight in year 1 (Expt. 1) or years 1 and 2 (Expt. 2) in the field. Similarly, N fertilizer rate had no effect on growth during year 1 in the field. However, trunk diameter increased with increasing N rate in year 2 and reached a maximum with N at 0.17 kg/tree yearly. Shoot number during the second growth flush in year 2 was much lower for nonfertilized vs. fertilized trees. Leaf N concentrations increased during the season for trees with initially low levels even for trees receiving low fertilizer rates. Soil nitrate-N levels were highest at the 0.34-kg rate, and lowest at the 0.11-kg rate. Nitrate-N levels decreased rapidly in the root zone within 2 to 3 weeks of fertilizing.


2010 ◽  
Vol 20 (2) ◽  
pp. 304-307 ◽  
Author(s):  
George E. Boyhan ◽  
Ray J. Hicks ◽  
Reid L. Torrance ◽  
Cliff M. Riner ◽  
C. Randell Hill

In a 3-year study of poultry litter applications on short-day onion (Allium cepa) production, where rates ranged from 0 to 10 tons/acre, there was an increasing linear effect on total onion yield. Jumbo (≥3 inches diameter) onion yield did not differ with increasing poultry application rates, while medium (≥2 and <3 inches diameter) yields decreased with increasing applications of poultry litter. In addition, organic-compliant fertilizers, 4N–0.9P–2.5K at 150 to 250 lb/acre nitrogen (N), as well as 13N–0P–0K at 150 lb/acre N and in combination with 9N–0P–7.5K totaling 150 lb/acre N were evaluated. Comparison of these commercial organic-compliant fertilizers indicated that there were no differences in total or jumbo yields, while medium yields generally decreased with increased N fertilizer rate.


2014 ◽  
Vol 6 (3) ◽  
Author(s):  
Md. Asaduzzaman ◽  
Mrityunjoy Biswas ◽  
Md. Nazrul Islam ◽  
Mohammad Mokhlesur Rahman ◽  
Rafeza Begum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document