scholarly journals Effect of Allium fistulosum Extracts on the Stimulation of Longitudinal Bone Growth in Animal Modeling Diet-Induced Calcium and Vitamin D Deficiencies

2021 ◽  
Vol 11 (17) ◽  
pp. 7786
Author(s):  
Jin Ah Ryuk ◽  
Hye Jin Kim ◽  
Joo Tae Hwang ◽  
Byoung Seob Ko

Allium fistulosum is a perennial plant species grown worldwide belonging to the family Liliaceae. In Korean medicine, it is referred to as Chongbaek (CB), and it is prescribed for symptoms associated with the common cold due to its antipyretic properties. This study examined the effects of aqueous (CBW) and 30% ethanol (CBE) extracts on bone growth using a calcium- and vitamin D-deficient animal model. In an in vitro experiment, the alkaline phosphate activities of the extracts were examined using MC3T3-E1 and MG63 cells, and both the aqueous and ethanolic extracts had significant alkaline phosphate activities. In vivo, a serum analysis indicated that the CB extracts promoted bone growth based on the osteogenic markers ALP, calcium, osteocalcin, and collagen type 1 and increased the bone mineral content (BMC), bone mineral density (BMD), and growth plate length. Overall, our results indicate that both CBW and CBE of A. fistulosum can be utilized to facilitate bone growth and increase BMD in children and adolescents by lengthening the growth plate without adverse side effects, such as metabolic disorders or the release of obesity-inducing hormones.

2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Xianling Feng ◽  
Xinxin Yue ◽  
Mao Niu

Objectives. The present study intended to further verify that simvastatin-loaded nanomicelles (SVNs) enhanced the role of simvastatin (SV) in promoting osteoblast differentiation in vitro and to evaluate the effect of SVNs on bone defect repair in vivo. Methods. SVNs were synthesized by dialysis. MG63 cells were subjected to intervention with 0.25 μmol/l of SVNs and SV. A 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay kit and flow cytometry were used to determine cell proliferation activity, cell cycle distribution, and apoptosis. The osteoblastic differentiation of MG 63 cells was evaluated by measuring alkaline phosphatase (ALP) activity, ALP staining, and the expression levels of the osterix (Osx) and osteocalcin (OC) proteins. In addition, 0.5 mg of SVNs or SV was applied to the skull defect area of rabbits. Micro-CT, hematoxylin and eosin (HE) staining, and Masson’s trichrome staining were used for qualitative and quantitative evaluation of new bone in three dimensions and two dimensions. Results. The SVNs had a mean diameter of 38.97 nm. The encapsulation and drug-loading efficiencies were 54.57 ± 3.15 % and 10.91 ± 0.63 % , respectively. In vitro, SVNs and SV can inhibit the proliferation activity and promote osteogenic differentiation of MG63 cells by arresting MG63 cells at the G0/G1 phase without increasing the apoptosis rate. In vivo quantitative results showed that the bone mineral density (BMD), bone volume (BV)/total volume (TV) ratio, and trabecular number (Tb.N) in the gelatin sponge with SVNs (SVNs-GS) group and gelatin sponge with SV (SV-GS) group were 362.1%, 292.0%; 181.3%, 158.0%; and 215.2%, 181.8% of those in the blank control (BC) group, respectively. Histological results identified the new bone tissue in each group as irregular fibrous bone, and the arrangement of trabecular bone was disordered. There were significantly more osteoblasts and new capillaries around the trabecular bone in the SVNs-GS group and SV-GS group than in both the BC and drug-free nanomicelle (DFNs) groups. Both in vitro and in vivo, SVNs exhibited greater osteogenic efficacy than SV. Conclusion. SVNs significantly improved the osteogenic efficacy of SV.


Radiology ◽  
2004 ◽  
Vol 231 (3) ◽  
pp. 805-811 ◽  
Author(s):  
Thomas M. Link ◽  
Boris B. Koppers ◽  
Thomas Licht ◽  
Jan Bauer ◽  
Ying Lu ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
pp. 55
Author(s):  
Zamzam Awida ◽  
Almog Bachar ◽  
Hussam Saed ◽  
Anton Gorodov ◽  
Nathalie Ben-Califa ◽  
...  

The two erythropoietin (EPO) receptor forms mediate different cellular responses to erythropoietin. While hematopoiesis is mediated via the homodimeric EPO receptor (EPOR), tissue protection is conferred via a heteromer composed of EPOR and CD131. In the skeletal system, EPO stimulates osteoclast precursors and induces bone loss. However, the underlying molecular mechanisms are still elusive. Here, we evaluated the role of the heteromeric complex in bone metabolism in vivo and in vitro by using Cibinetide (CIB), a non-erythropoietic EPO analogue that exclusively binds the heteromeric receptor. CIB is administered either alone or in combination with EPO. One month of CIB treatment significantly increased the cortical (~5.8%) and trabecular (~5.2%) bone mineral density in C57BL/6J WT female mice. Similarly, administration of CIB for five consecutive days to female mice that concurrently received EPO on days one and four, reduced the number of osteoclast progenitors, defined by flow cytometry as Lin−CD11b−Ly6Chi CD115+, by 42.8% compared to treatment with EPO alone. In addition, CIB alone or in combination with EPO inhibited osteoclastogenesis in vitro. Our findings introduce CIB either as a stand-alone treatment, or in combination with EPO, as an appealing candidate for the treatment of the bone loss that accompanies EPO treatment.


2013 ◽  
Vol 16 (1) ◽  
pp. 3-8 ◽  
Author(s):  
P. Tóth ◽  
C. Horváth ◽  
V. Ferencz ◽  
B. Tóth ◽  
A. Váradi ◽  
...  

Abstract Despite the fact that bone mineral density (BMD) is an important fracture risk predictor in human medicine, studies in equine orthopedic research are still lacking. We hypothesized that BMD correlates with bone failure and fatigue fractures of this bone. Thus, the objectives of this study were to measure the structural and mechanical properties of the proximal phalanx with dual energy X-ray absorptiometry (DXA), to correlate the data obtained from DXA and computer tomography (CT) measurements to those obtained by loading pressure examination and to establish representative region of interest (ROI) for in vitro BMD measurements of the equine proximal phalanx for predicting bone failure force. DXA was used to measure the whole bone BMD and additional three ROI sites in 14 equine proximal phalanges. Following evaluation of the bone density, whole bone, cortical width and area in the mid-diaphyseal plane were measured on CT images. Bones were broken using a manually controlled universal bone crusher to measure bone failure force and reevaluated for the site of fractures on follow-up CT images. Compressive load was applied at a constant displacement rate of 2 mm/min until failure, defined as the first clear drop in the load measurement. The lowest BMD was measured at the trabecular region (mean ± SD: 1.52 ± 0.12 g/cm2; median: 1.48 g/cm2; range: 1.38-1.83 g/cm2). There was a significant positive linear correlation between trabelcular BMD and the breaking strength (P=0.023, r=0.62). The trabecular region of the proximal phalanx appears to be the only significant indicator of failure of strength in vitro. This finding should be reassessed to further reveal the prognostic value of trabecular BMD in an in vivo fracture risk model.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 517-517 ◽  
Author(s):  
Yongzheng He ◽  
Karl Staser ◽  
Steven D Rhodes ◽  
Xiaohua Wu ◽  
Ping Zhang ◽  
...  

Abstract Abstract 517 Extracellular signal-regulated kinase (ERK 1 and 2) are widely expressed and are involved in the regulation of meiosis, mitosis, and postmitotic functions in multiple cell lineages, including T cells, B cells and osteoblasts. Macrophages are capable of differentiating into osteoclasts, which resorb bone. Abnormal osteoclast development and functions underlie certain diseases, especially skeletal defects. Altered ERK1/2 signaling has been found in several genetic diseases with skeletal phenotypes, including Noonan syndrome, polycystic kidney disease and serious developmental disorders such as cardio-facio-cutaneous syndrome. These clinical findings suggest the importance of the ERK MAPK pathway in human skeletal development. In the present study, we examined the consequence of Erk1 and Erk2 disruption in modulating macrophage development in the murine system. We found that deletion of Erk1 reduced macrophage progenitor numbers. Erk1−/− bone marrow mononuclear cells (BMMNCs) had significant reduction in osteoclast formation as compared to wildtype BMMNCs. In addition, Erk1−/− macrophages; the osteoclast progenitors, had a two-three fold reduction in migration and a two-fold reduction in αv ß3 mediated adhesion as compared to WT macrophages as evaluated by transwell and adhesion assay, respectively. These in vitro data demonstrate that Erk1 positively regulates macrophage differentiation into osteoclasts. To evaluate the impact of deficiency of Erk1 in vivo, we examined bone mineral density and trabecular microarchitecture in the distal femoral metaphysis by dual-energy X-ray absorptiometry (DEXA) with a Lunar Piximus densitometer and a high-resolution desktop microcomputed tomography imaging system (μCT-20; Scanco Medical AG, Basserdorf, Switzerland), respectively. Erk1−/− mice displayed elevated bone mineral density and increased trabecular bone formation as compared to WT mice. Histomorphometric analysis indicated that the Erk1−/− femur had significant reduction in osteoclast numbers as determined by tartrate resistant acid phosphatase staining, an osteoclast specific staining, as compared to femur of wildtype and Erk2−/− mice. Most importantly, Erk1−/− plasma had reduced C-terminal telopeptide of type I collagen, indicating less bone resorption in vivo. These data suggest that the impaired macrophage differentiation and osteoclast bone resorptive activity play an important role in increased bone mass in Erk1−/− mice. Finally, to verify that the macrophage-osteoclast lineage is a key cell lineage for the phenotypic changes in vivo in Erk1−/− mice, we performed bone marrow transplantation. WT mice reconstituted long-term with Erk1−/− hematopoietic stem cells demonstrated increased bone mineral density as compared to WT and Erk2−/− stem cell recipients, implicating marrow autonomous, Erk1-dependent macrophage differentiation and osteoclast bioactivity in vivo. Collectively, our in vitro and in vivo data demonstrate isoform-specific Erk function in macrophage while providing rationale for the development of a specific inhibitor for Erk1 that might be used for the treatment of dysplastic and erosive bone diseases. Disclosures: No relevant conflicts of interest to declare.


Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 186
Author(s):  
Seon Yu Kim ◽  
Hee-Ju Lee ◽  
Taehyun Kim ◽  
Yeong-Geun Lee ◽  
Jeong Eun Kwon ◽  
...  

Osteoporosis is the most common bone disease associated with low bone mineral density. It is the process of bone loss and is most commonly caused by decreased estrogen production in women, particularly after menopause. Pueraria lobata, which contains various metabolites, especially isoflavone, is widely known as regulator for bone mineral contents. In this study, the effects of the P. lobata extract (PE) with or without fermentation with Lactobacillus paracasei JS1 (FPE) on osteoporosis were investigated in vitro and in vivo. The effects of PE and FPE on human osteoblastic MG63 cells, RAW 264.7 cells, and ovariectomized (OVX)-induced model mice were analyzed at various ratios. We found that FPE increased calcium deposition and inhibited bone resorption by in vitro assay. Furthermore, treatment with PE and FPE has significantly restored destroyed trabecular bone in the OVX-induced bone loss mouse model. Overall, FPE demonstrated bioactivity to prevent bone loss by decreasing bone turnover.


2017 ◽  
Vol 9 (7) ◽  
pp. 5784-5792 ◽  
Author(s):  
Huifang Liu ◽  
Yi Jin ◽  
Kun Ge ◽  
Guang Jia ◽  
Zhenhua Li ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 369 ◽  
Author(s):  
Eunkuk Park ◽  
Eunguk Lim ◽  
Subin Yeo ◽  
Yoonjoong Yong ◽  
Junga Yang ◽  
...  

Natural herbal medicines have been developed for the treatment and prevention of women’s menopausal symptoms. In this study, we investigated the anti-menopausal effects of Cornus officinalis (CO) and Ribes fasciculatum (RF) extracts in 3T3-L1 preadipocytes, MC3T3-E1 preosteoblasts, and COV434 granulosa cells in vitro and ovariectomized (OVX) ddY mice in vivo. Combination treatment of CO and RF extract at 7:3 ratio inhibited lipid accumulation via Plin1 and Adipoq downregulation in a cocktail of dexamethasone, 3-isobutyl-1-methylxanthine, and insulin (DMI)-induced differentiated 3T3-L1 cells. In addition, CO + RF treatment significantly enhanced osteoblastic differentiation, with mineralized nodule formation occurring through the upregulation of osteoblast-inducing markers in osteoblastic MC3T3-E1 cells. Increased production of estradiol and mRNA expression of ERα (ESR1) were observed in androstenedione-induced COV434 granulosa cells treated with the CO + RF extract. In CO + RF-treated mice, fatty hepatocyte deposition and abdominal visceral fat tissues reduced with OVX-induced uterine atrophy. Furthermore, bone mineral density and bone mineral content were significantly enhanced by CO + RF in mouse models of ovariectomy-induced femoral bone loss. Taken together, our findings suggested that CO + RF promoted estrogenic activity and had anti-obesity and anti-osteoporotic effects in vitro and in vivo. Thus, a combination of CO and RF extracts may be a good therapeutic strategy for managing women’s menopausal syndromes.


2021 ◽  
pp. 088532822199989
Author(s):  
Christopher Erickson ◽  
Michael Stager ◽  
Michael Riederer ◽  
Karin A Payne ◽  
Melissa Krebs

The growth plate is a cartilage tissue near the ends of children’s long bones and is responsible for bone growth. Injury to the growth plate can result in the formation of a ‘bony bar’ which can span the growth plate and result in bone growth abnormalities in children. Biomaterials such as chitosan microgels could be a potential treatment for growth plate injuries due to their chondrogenic properties, which can be enhanced through loading with biologics. They are commonly fabricated via an emulsion method, which involves solvent rinses that are cytotoxic. Here, we present a high throughput, non-cytotoxic, non-emulsion-based method to fabricate chitosan–genipin microgels. Chitosan was crosslinked with genipin to form a hydrogel network, and then pressed through a syringe filter using mesh with various pore sizes to produce a range of microgel particle sizes. The microgels were then loaded with chemokines and growth factors and their release was studied in vitro. To assess the applicability of the microgels for growth plate cartilage regeneration, they were injected into a rat growth plate injury. They led to increased cartilage repair tissue and were fully degraded by 28 days in vivo. This work demonstrates that chitosan microgels can be fabricated without solvent rinses and demonstrates their potential for the treatment of growth plate injuries.


Sign in / Sign up

Export Citation Format

Share Document