scholarly journals Effects of a Dual-Purpose Inoculant on the Quality and Aerobic Stability of Corn Silage at the Laboratory and Field Scales

2021 ◽  
Vol 11 (17) ◽  
pp. 8257
Author(s):  
Hsiu-Ming Weng ◽  
Li-Chen Kao ◽  
Shu-Min Wang ◽  
Chia-Sheng Chen ◽  
Ting-Yu Lee ◽  
...  

This study investigated the effects of a dual-purpose inoculant (DPI) on the fermentation profile, nutritive value, and aerobic stability of silage. The inoculant effect was first examined with minisilos, and the results were later validated with 400-kg silo bales and a 40-t bunker silo. Briefly, whole-plant corn harvested at the one-half to two-thirds milk line stage was chopped and then treated with or without inoculant containing Lactobacillus plantarum LP1028 and Lactobacillus buchneri LBC1029 at application rates of 2.5 × 105 cfu and 5.0 × 105 cfu per gram of fresh forage, respectively. The results showed that applying DPI had no effect on the nutritive value in all trials. DPI inoculation also slowed yeast and mold growth in silage under aerobic exposure. Inoculation may double the aerobic stability time after 105 d of ensiling (53.25 vs. 113.20 h) in a bunker silo. This study successfully examined the effectiveness of DPI in minisilos, and the results were consistent when moving from the laboratory to the field. Applying DPI made the fermentation more heterolactic without compromising the silage nutritive value, and increasing acetic acid acted as an antifungal agent to inhibit spoilage microbial growth and improve silage aerobic stability.

2020 ◽  
Vol 98 (8) ◽  
Author(s):  
Érica B da Silva ◽  
Rebecca M Savage ◽  
Amy S Biddle ◽  
Stephanie A Polukis ◽  
Megan L Smith ◽  
...  

Abstract We evaluated the effects of a chemical additive on the microbial communities, fermentation profile, and aerobic stability of whole-plant corn silage with or without air stress during storage. Whole-plant corn was either untreated or treated with a chemical additive containing sodium benzoate, potassium sorbate, and sodium nitrite at 2 or 3 liters/t of fresh forage weight. Ten individually treated and replicated silos (7.5 liters) were made for each treatment. Half of the silos remained sealed throughout a 63-d storage period, and the other half was subjected to air stress for 2 h/wk. The composition of the bacterial and fungal communities of fresh forage and silages untreated or treated with 2 liters/t of fresh forage weight was analyzed by Illumina Miseq sequencing. Treated silage had greater (P < 0.05) aerobic stability than untreated, even when subjected to air stress during storage, but the numbers of yeasts culturable on selective agar were not affected. However, the additive reduced the relative abundance (RA) of the lactating-assimilating yeast Candida tropicalis (P < 0.01). In air-stressed silages, untreated silage had a greater (P < 0.05) RA of Pichia kudriavzevii (also a lactate assimilator) than treated silage, whereas treated silage was dominated by Candida humilis, which is usually unable to assimilate lactate or assimilates it slowly. The additive improved the aerobic stability by specifically preventing the dominance of yeast species that can consume lactate and initiate aerobic spoilage. To the best of our knowledge, this is the first work that identifies the specific action of this additive on shifting the microbial communities in corn silage.


2018 ◽  
Vol 53 (9) ◽  
pp. 1045-1052
Author(s):  
Mateus Merlo Coelho ◽  
Lúcio Carlos Gonçalves ◽  
José Avelino Santos Rodrigues ◽  
Kelly Moura Keller ◽  
Gustavo Vinícius de Souza dos Anjos ◽  
...  

Abstract: The objective of this work was to evaluate the effects of re-ensiling and bacterial inoculation on the quality of corn silage. The experiment was carried out in a 2x2 factorial design with or without inoculant (association of Lactobacillus plantarum and Propionibacterium acidipropionici), and with re-ensiling after 36 hours of aerobic exposure or only ensiling of the whole plant of 'BRS 1055' corn. The fermentative quality, nutritional parameters, dry matter losses, aerobic stability, and microbiological counts of silages were evaluated. Re-ensiling caused an increase of pH and in acetic acid and propionic acid concentrations, as well as in the dry matter (DM), crude protein, neutral detergent fiber, and neutral detergent fiber crude protein contents. Conversely, there was a reduction in the nonfiber carbohydrates concentration and in in vitro dry matter digestibility for the re-ensiled material. All changes were explained by the higher-effluent production and DM loss of re-ensiled material that was subjected to two compactions. Microbiology was not altered by the treatments. The use of inoculant altered ash content, but it did not influence other parameters. In contrast, re-ensiling after 36 hours of aerobic exposure caused a reduction in the nutritive value of corn silage and accentuated the DM losses.


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1587
Author(s):  
Yue Liu ◽  
Guogen Wang ◽  
Hao Wu ◽  
Qingxiang Meng ◽  
Muhammad Zahoor Khan ◽  
...  

This study was designed to evaluate the effect of hybrid type on the fermentation and nutritional parameters of whole-plant corn silage (dual-purpose and silage-specific corn). For this purpose, the two corn hybrid types were harvested at the one-half to three-fourths milk line and ensiled in fermentation bags (50 × 80 cm) for 60 day. Our results demonstrated that the ratio of lactic acid to acetic acid (p = 0.004), propionic acid (p < 0.001), Flieg point (p < 0.001), ether extract (p = 0.039), starch (p < 0.001), milk-per-ton index (p < 0.005), net energy for lactation (p = 0.003), total digestible nutrients (p < 0.001), neutral detergent soluble fiber (p =0.04), and in situ dry matter digestibility (TDMDis) (p < 0.001) were higher in dual-purpose corn silage, while the pH (p = 0.014), acetic acid (p = 0.007), the ratio of ammonia nitrogen to total nitrogen (p = 0.045), neutral detergent fiber (p < 0.001), acid detergent fiber (p < 0.001), acid detergent lignin (p < 0.001), dry matter yield per ha (p < 0.001), milk-per-acre index (p = 0.003), available neutral detergent fiber (p < 0.001), and unavailable neutral detergent fiber (p < 0.001) were higher in silage-specific corn silage. Based on our analysis, we concluded that under favourable production conditions for whole-plant corn silage, the nutritive value per unit was higher in dual-purpose corn while biomass yield and nutrient value per ha were higher in silage-specific corn.


2018 ◽  
Vol 39 (1) ◽  
pp. 253
Author(s):  
Marcos Rogério Oliveira ◽  
Antônio Vinícius Iank Bueno ◽  
Guilherme Fernando Mattos Leão ◽  
Mikael Neumann ◽  
Clóves Cabreira Jobim

We aimed to evaluate nutritional quality, fermentation profile, aerobic stability, and dry matter losses in corn (Zea mays) and wheat (Triticum aestivum 'BRS Umbu') silages. Treatments included uninoculated and inoculated (Lactobacillus plantarum and Pediococcus acidilactici, 1.0 × 105 UFC g-1) wheat silage, corn silage from a conventional hybrid and a transgenic hybrid. Nutritional quality and fermentation profile variables were tested in a completely randomized design. Means were compared using Tukey’s test at 5% significance. An aerobic stability trial was conducted in a factorial design with two silages (wheat × inoculated wheat; conventional hybrid corn × transgenic hybrid corn) and two temperatures (ambient temperature × controlled temperature at 24°C). Data were submitted to ANOVA and means were analyzed by the F test at 5% probability. Inoculation of wheat silage increased dry matter, organic matter, and total carbohydrates, but reduced crude protein by a dilution effect. Regarding the fermentation profile, inoculation reduced acetic acid and butyric acid content, whereas it increased propionic acid in wheat silage. Bt corn hybrid silage showed higher dry matter and lower neutral detergent fiber, whereas transgenic corn silage showed lower content of acetic acid, propionic acid, alcohol, and ammonia. Conversely, Bt hybrid silage showed higher butyric acid. Transgenic corn silage showed higher temperature than the conventional hybrid silage during aerobic exposure. Inoculated wheat silage experienced larger deterioration and dry matter losses during the aerobic stability trial. Temperature control worsened aerobic stability in all treatments, increasing dry matter losses and heating.


Agriculture ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 335
Author(s):  
Ana Paula Maia dos Santos ◽  
Edson Mauro Santos ◽  
Gherman Garcia Leal de Araújo ◽  
Juliana Silva de Oliveira ◽  
Anderson de Moura Zanine ◽  
...  

The current study aimed to evaluate the application effects of the preactivated Lactobacillus buchneri and urea on the fermentative characteristics, chemical composition and aerobic stability in corn silages. The design was completely randomized, in a 6 × 5 factorial arrangement, with six types of additive and five opening times. The treatments consisted of corn silage; corn silage with freeze-dried inoculant; corn silage with freeze-dried inoculant +1.0% urea; corn silage with activated inoculant; corn silage with activated inoculant +1.0% urea, and corn silage with 1.0% urea. Populations of lactic acid bacteria stabilized at the 70th day, with average values of 8.91 and 9.15 log cfu/g for corn silage with freeze-dried inoculant +1.0% urea and corn silage with freeze-dried inoculant, respectively. In contrast, the silages without additives showed significantly lower values of 7.52 log cfu/g forage at the 70th day. The silages with urea (isolated or associated with the inoculant) increased the total nitrogen content. The maximum temperature values were highest in the corn silages without additives, indicating that these silages were more prone to deterioration. The use of Lactobacillus buchneri activated proved to be more efficient in improving the fermentative profile of corn silages than the freeze-dried inoculant. The use of urea as an additive reduced the losses and improved the nutritional value and aerobic stability of corn silages. Additionally, the combination of Lactobacillus buchneri activated and urea may be used as a technique to improve the fermentative profile, chemical composition and aerobic stability of corn silages.


Sign in / Sign up

Export Citation Format

Share Document