scholarly journals Orbital Evolution of Planetary Systems

2004 ◽  
Vol 202 ◽  
pp. 175-177
Author(s):  
Tapan K. Chatterjee ◽  
V. B. Magalinsky

It is significant that the orbits of the planets in the solar system are very nearly circular, except for Mercury and Pluto where, conceivably, due to their comparatively small sizes, the tidal forces have played a less active role. Most of the suspected planets orbiting pulsars have nearly circular orbits. These systems tend to have minimum energy and are subjected to tidal forces. We find that a planet circularizes its orbit, in an effort to attain orbital stability and the ground state. Details can be found in Magalinsky & Chatterjee, 1997, and Magalinsky and Chatterjee, 2000.

2021 ◽  
Vol 11 (18) ◽  
pp. 8624
Author(s):  
Klaus Paschek ◽  
Arthur Roßmann ◽  
Michael Hausmann ◽  
Georg Hildenbrand

Volcanism powered by tidal forces inside celestial bodies can provide enough energy to keep important solvents for living systems in the liquid phase. A prerequisite to calculate such tidal interactions and consequences is depending on simulations for tidal accelerations in a multi-body system. Unfortunately, from measurements in many extrasolar planetary systems, only few physical and orbital parameters are well-known enough for investigated celestial bodies. For calculating tidal acceleration vectors under missing most orbital parameter exactly, a simulation method is developed that is only based on a few basic parameters, easily measurable even in extrasolar planetary systems. Such a method as the one presented here allows finding a relation between the tidal acceleration vectors and potential heating inside celestial objects. Using the values and results of our model approach to our solar system as a “gold standard” for feasibility allowed us to classify this heating in relation to different forms of volcanism. This “gold standard” approach gave us a classification measure for the relevance of tidal heating in other extrasolar systems with a reduced availability of exact physical parameters. We help to estimate conditions for the identification of potential candidates for further sophisticated investigations by more complex established methods such as viscoelastic multi-body theories. As a first example, we applied the procedures developed here to the extrasolar planetary system TRAPPIST-1 as an example to check our working hypothesis.


2011 ◽  
Vol 7 (S282) ◽  
pp. 429-436
Author(s):  
Wilhelm Kley

AbstractThe formation of planetary systems is a natural byproduct of the star formation process. Planets can form inside the protoplanetary disk by two alternative processes. Either through a sequence of sticking collisions, the so-called sequential accretion scenario, or via gravitational instability from an over-dense clump inside the protoplanetary disk. The first process is believed to have occurred in the solar system. The most important steps in this process will be outlined. The observed orbital properties of exoplanetary systems are distinctly different from our own Solar System. In particular, their small distance from the star, their high eccentricity and large mass point to the existence of a phase with strong mutual excitations. These are believed to be a result of early evolution of planets due to planet-disk interaction. The importance of this process in shaping the dynamical structure of planetary systems will be presented.


Author(s):  
Klaus Paschek ◽  
Arthur Roßmann ◽  
Michael Hausmann ◽  
Georg Hildenbrand

Volcanism powered by tidal forces inside celestial bodies can provide enough energy to keep important solvents for living systems in the liquid phase. Moreover, tidal forces and their environmental consequences may strongly influence habitability of planets and other celestial bodies and may result in special forms of live and living conditions. A prerequisite to calculate such tidal interactions and consequences is depending on simulations for tidal accelerations in a multi-body system. Unfortunately, from measurements in many extrasolar planetary systems only few physical and orbital parameters are well enough known for investigated celestial bodies. For calculating tidal acceleration vectors under missing most orbital parameter exactly, a simulation method is developed that is only based on a few basic parameters, easily measurable even in extrasolar planetary systems. Such a method as being presented here, allows finding a relation between the tidal acceleration vectors and potential heating inside celestial objects. Using values and results of our model approach to our solar system as a “gold standard” for feasibility allowed us to classify this heating in relation to different forms of volcanism. This “gold standard” approach gave us a classification measure for the relevance of tidal heating in other extrasolar systems with a reduced availability of exact physical parameters. We would help to estimate conditions for the identification of potential candidates for further sophisticated investigations by more complex established methods like viscoelastic multi-body theories. As a first example, we applied the procedures developed here to the extrasolar planetary system TRAPPIST-1 as an example to check our working hypothesis.


2019 ◽  
Vol 488 (1) ◽  
pp. 1446-1461 ◽  
Author(s):  
Fred C Adams

ABSTRACT Current observations indicate that the planet formation process often produces multiple planet systems with nearly circular orbits, regular spacing, a narrow range of inclination angles, and similar planetary masses of order mp ∼ 10 M⊕. Motivated by the observational sample, this paper determines the tidal equilibrium states for this class of extrasolar planetary systems. We start by considering two-planet systems with fixed orbital spacing and variable mass ratios. The basic conjecture explored in this paper is that the planet formation process will act to distribute planetary masses in order to achieve a minimum energy state. The resulting minimum energy configuration – subject to the constraint of constant angular momentum – corresponds to circular orbits confined to a plane, with nearly equal planetary masses (as observed). We then generalize the treatment to include multiple planet systems, where each adjacent pair of planets attains its (local) tidal equilibrium state. The properties of observed planetary systems are close to those expected from this pairwise equilibrium configuration. In contrast, observed systems do not reside in a global minimum energy state. Both the equilibrium states of this paper and observed multiplanet systems, with planets of nearly equal mass on regularly spaced orbits, have an effective surface density of the form σ ∝ r−2, much steeper than most disc models.


Author(s):  
John Chambers ◽  
Jacqueline Mitton

The birth and evolution of our solar system is a tantalizing mystery that may one day provide answers to the question of human origins. This book tells the remarkable story of how the celestial objects that make up the solar system arose from common beginnings billions of years ago, and how scientists and philosophers have sought to unravel this mystery down through the centuries, piecing together the clues that enabled them to deduce the solar system's layout, its age, and the most likely way it formed. Drawing on the history of astronomy and the latest findings in astrophysics and the planetary sciences, the book offers the most up-to-date and authoritative treatment of the subject available. It examines how the evolving universe set the stage for the appearance of our Sun, and how the nebulous cloud of gas and dust that accompanied the young Sun eventually became the planets, comets, moons, and asteroids that exist today. It explores how each of the planets acquired its unique characteristics, why some are rocky and others gaseous, and why one planet in particular—our Earth—provided an almost perfect haven for the emergence of life. The book takes readers to the very frontiers of modern research, engaging with the latest controversies and debates. It reveals how ongoing discoveries of far-distant extrasolar planets and planetary systems are transforming our understanding of our own solar system's astonishing history and its possible fate.


Author(s):  
Karel Schrijver

In this chapter, the author summarizes the properties of the Solar System, and how these were uncovered. Over centuries, the arrangement and properties of the Solar System were determined. The distinctions between the terrestrial planets, the gas and ice giants, and their various moons are discussed. Whereas humans have walked only on the Moon, probes have visited all the planets and several moons, asteroids, and comets; samples have been returned to Earth only from our moon, a comet, and from interplanetary dust. For Earth and Moon, seismographs probed their interior, whereas for other planets insights come from spacecraft and meteorites. We learned that elements separated between planet cores and mantels because larger bodies in the Solar System were once liquid, and many still are. How water ended up where it is presents a complex puzzle. Will the characteristics of our Solar System hold true for planetary systems in general?


Author(s):  
Karel Schrijver

How many planetary systems formed before our’s did, and how many will form after? How old is the average exoplanet in the Galaxy? When did the earliest planets start forming? How different are the ages of terrestrial and giant planets? And, ultimately, what will the fate be of our Solar System, of the Milky Way Galaxy, and of the Universe around us? We cannot know the fate of individual exoplanets with great certainty, but based on population statistics this chapter sketches the past, present, and future of exoworlds and of our Earth in general terms.


Author(s):  
John H D Harrison ◽  
Amy Bonsor ◽  
Mihkel Kama ◽  
Andrew M Buchan ◽  
Simon Blouin ◽  
...  

Abstract White dwarfs that have accreted planetary bodies are a powerful probe of the bulk composition of exoplanetary material. In this paper, we present a Bayesian model to explain the abundances observed in the atmospheres of 202 DZ white dwarfs by considering the heating, geochemical differentiation, and collisional processes experienced by the planetary bodies accreted, as well as gravitational sinking. The majority (>60%) of systems are consistent with the accretion of primitive material. We attribute the small spread in refractory abundances observed to a similar spread in the initial planet-forming material, as seen in the compositions of nearby stars. A range in Na abundances in the pollutant material is attributed to a range in formation temperatures from below 1,000 K to higher than 1,400 K, suggesting that pollutant material arrives in white dwarf atmospheres from a variety of radial locations. We also find that Solar System-like differentiation is common place in exo-planetary systems. Extreme siderophile (Fe, Ni or Cr) abundances in 8 systems require the accretion of a core-rich fragment of a larger differentiated body to at least a 3σ significance, whilst one system shows evidence that it accreted a crust-rich fragment. In systems where the abundances suggest that accretion has finished (13/202), the total mass accreted can be calculated. The 13 systems are estimated to have accreted masses ranging from the mass of the Moon to half that of Vesta. Our analysis suggests that accretion continues for 11Myrs on average.


Photochem ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 26-37
Author(s):  
Victoria C. Frederick ◽  
Thomas A. Ashy ◽  
Barbara Marchetti ◽  
Michael N. R. Ashfold ◽  
Tolga N. V. Karsili

Melanins are skin-centered molecular structures that block harmful UV radiation from the sun and help protect chromosomal DNA from UV damage. Understanding the photodynamics of the chromophores that make up eumelanin is therefore paramount. This manuscript presents a multi-reference computational study of the mechanisms responsible for the experimentally observed photostability of a melanin-relevant model heterodimer comprising a catechol (C)–benzoquinone (Q) pair. The present results validate a recently proposed photoinduced intermolecular transfer of an H atom from an OH moiety of C to a carbonyl-oxygen atom of the Q. Photoexcitation of the ground state C:Q heterodimer (which has a π-stacked “sandwich” structure) results in population of a locally excited ππ* state (on Q), which develops increasing charge-transfer (biradical) character as it evolves to a “hinged” minimum energy geometry and drives proton transfer (i.e., net H atom transfer) from C to Q. The study provides further insights into excited state decay mechanisms that could contribute to the photostability afforded by the bulk polymeric structure of eumelanin.


Sign in / Sign up

Export Citation Format

Share Document