scholarly journals Effect of Printing Layer Thickness on the Trueness and Margin Quality of 3D-Printed Interim Dental Crowns

2021 ◽  
Vol 11 (19) ◽  
pp. 9246
Author(s):  
Gülce Çakmak ◽  
Alfonso Rodriguez Cuellar ◽  
Mustafa Borga Donmez ◽  
Martin Schimmel ◽  
Samir Abou-Ayash ◽  
...  

The information in the literature on the effect of printing layer thickness on interim 3D-printed crowns is limited. In the present study, the effect of layer thickness on the trueness and margin quality of 3D-printed composite resin crowns was investigated and compared with milled crowns. The crowns were printed in 3 different layer thicknesses (20, 50, and 100 μm) by using a hybrid resin based on acrylic esters with inorganic microfillers or milled from polymethylmethacrylate (PMMA) discs and digitized with an intraoral scanner (test scans). The compare tool of the 3D analysis software was used to superimpose the test scans and the computer-aided design file by using the manual alignment tool and to virtually separate the surfaces. Deviations at different surfaces on crowns were calculated by using root mean square (RMS). Margin quality of crowns was examined under a stereomicroscope and graded. The data were evaluated with one-way ANOVA and Tukey HSD tests. The layer thickness affected the trueness and margin quality of 3D-printed interim crowns. Milled crowns had higher trueness on intaglio and intaglio occlusal surfaces than 100 μm-layer thickness crowns. Milled crowns had the highest margin quality, while 20 μm and 100 μm layer thickness printed crowns had the lowest. The quality varied depending on the location of the margin.

Symmetry ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 334 ◽  
Author(s):  
Francesco Naddeo ◽  
Alessandro Naddeo ◽  
Nicola Cappetti ◽  
Emilio Cataldo ◽  
Riccardo Militio

In this article, the authors propose a novel procedure for designing a customized 3D-printed surgical template to guide surgeons in inserting screws into the sacral zone during arthrodesis surgeries. The template is characterized by two cylindrical guides defined by means of trajectories identified, based on standard procedure, via an appropriate Computer-Aided-Design (CAD)-based procedure. The procedure is based on the definition of the insertion direction by means of anatomical landmarks that enable the screws to take advantage of the maximum available bone path. After 3D printing, the template adheres perfectly to the bone surface, showing univocal positioning by exploiting the foramina of the sacrum, great maneuverability due to the presence of an ergonomic handle, as well as a break system for the two independent guides. These features make the product innovative. Thanks to its small size and the easy anchoring, the surgeon can simply position the template on the insertion area and directly insert the screws, without alterations to standard surgical procedures. This has the effect of reducing the overall duration of the surgery and the patient’s exposure to X-rays, and increasing both the safety of the intervention and the quality of the results.


2017 ◽  
Vol 37 (2) ◽  
pp. 162-169 ◽  
Author(s):  
Julien Gardan

Purpose This paper aims to present a technical approach to evaluate the quality of textures obtained by an inkjet during binder jetting in 3D printing on a powder bed through contours detection to improve the quality of the surface printed according to the result of the assembly between the inkjet and a granular product. Design/methodology/approach The manufacturing process is based on the use of computer-aided design and a 3D printer via binder jetting. Image processing measures the edge deviation of a texture on the granular surface with the possibility of implementing a correction in an active assembly through a “design for manufacturing” (DFM) approach. Example application is presented through first tests. Findings This approach observes a shape alteration of the printed image on a 3D printed product, and the work used the image processing method to improve the model according to the DFM approach. Originality/value This paper introduces a solution for improving the texture quality on 3D printed products realized via binder jetting. The DFM approach proposes an active assembly by compensating the print errors in upstream of a product life cycle.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
D G E Thiem ◽  
B Al-Nawas ◽  
P W Kämmerer

Abstract In recent years, alloplastic temporomandibular joint (TMJ) replacement has become a permissible procedure for the reconstruction of severely destroyed TMJs. The use of computer-aided design/computer-aided manufacturing (CAD/CAM) has extended the range of applications to complex anatomical situations. The aim of the treatment is to improve the usually restricted mouth opening and thus oral hygiene and nutrition, which leads to a regular improvement in the general quality of life. The following case report describes the bilateral replacement of ankylotically destroyed TMJs using patient-specific endoprostheses with simultaneous displacement of the maxilla. Innovative in the case described is the impression-free CAD/CAM planning, whereby the upper and lower prostheses were produced on the basis of 3D printed patient models.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1401
Author(s):  
Doo-Bin Song ◽  
Man-So Han ◽  
Si-Chul Kim ◽  
Junyong Ahn ◽  
Yong-Woon Im ◽  
...  

This study investigated the fitting accuracy of titanium alloy fixed dental prostheses (FDP) after sequential CAD/CAM (Computer Aided Design/Computer Aided Manufacturing) fabrication. A three-unit FDP model connecting mandibular second premolars and molars was prepared and scanned to fabricate titanium FDPs by CAD/CAM milling. A total of six FDPs were sequentially milled in one titanium alloy disk using a new set of burs every time (n = 4). The fitting accuracy of FDPs was mesiodistally evaluated by a silicone replica technique and the measurement was triplicated at four different locations: MO (marginal opening), MG (marginal gap), AG (axial gap), and OG (occlusal gap). Data were statistically analyzed using ANOVA and Tukey’s HSD test. The fitting accuracy of PMMA (polymethyl methacrylate) FDPs milled using the worn or new bur were evaluated by the same procedure (n = 6). The mean dimensions of titanium FDP for all measuring positions, except for AG, were significantly increased from the third milling. However, no difference was noted between the first FDP and the second FDP milled with the same set of burs. Severe edge chippings were observed in all milling burs. Detrimental effects of the worn burs on the fitting accuracy were demonstrated in the CAD/CAM-milled PMMA FDP. The results recommend proper changing frequency of cutting burs to achieve the quality of fit and predictable outcomes for dental CAD/CAM prostheses.


2021 ◽  
Vol 26 (5) ◽  
pp. 399-409
Author(s):  
M.A. Zapletina ◽  
◽  
S.V. Gavrilov ◽  
◽  

One of the main advantages of FPGA and CPLD is the high development speed; therefore, the importance of effective computer-aided design tools for modern microcircuits of these classes cannot be overestimated. Placement and routing are the most time-consuming stages of FPGA/CPLD design flow. The quality of results of these stages is crucial to the final perfor-mance of custom digital circuits implemented on FPGA/CPLD. The paper discusses an approach to accelerating the routing stage within the layout synthesis flow for FPGA/CPLD by introducing a few algorithmic improvements to a routing procedure. The basic routing algorithm under study is a modified Pathfinder for a mixed routing resource graph. Pathfinder is a well-known negotiation-based routing algorithm that works on the principle of iteratively eliminating congestions of chip routing resources. For experiments, the sets of test digital circuits ISCAS'85, ISCAS'89, LGSynth'89 and several custom industrial projects were used. The impact of the proposed algorithmic improvements was analyzed using four FPGA/CPLD architectures. It has been established that due to the improvements of the algorithm proposed in the paper, the average reduction in routing time was from 1.3 to 2.6 times, depending on the FPGA/CPLD architecture, with no significant negative effect on the timing characteristics of the designed circuits.


2020 ◽  
pp. 030936462094829 ◽  
Author(s):  
Trevor Binedell ◽  
Eugene Meng ◽  
Karupppasamy Subburaj

Background: Upper limb, in particular forequarter amputations, require highly customised devices that are often expensive and underutilised. Objectives: The objective of this study was to design and develop a comfortable 3D-printed cosmetic forequarter prosthetic device, which was lightweight, cool to wear, had an elbow that could lock, matched the appearance of the contralateral arm and was completely free of metal for a specific user’s needs. Study Design: Device design. Technique: An iterative user-centred design approach was used for digitising, designing and developing a functional 3D-printed prosthetic arm for an acquired forequarter amputation, while optimising the fit and function after each prototype. Results: The cost of the final arm was 20% less expensive than a traditionally-made forequarter prostheses in Singapore. The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST) 2.0 survey was administered, with results indicating that the 3D-printed arm was preferred due to its overall effectiveness, accurate size, ease of use and suspension. However, durability had a lower score, and the weight of the arm was 100 g heavier than the user’s current prosthesis. The technique described resulted in a precise fitting and shaped forequarter prosthesis for the user. Using the user’s feedback in the iterations of the design resulted in improved QUEST survey results indicating the device was effective, easy to use, perceived as lighter and more secure than the user’s traditionally-made device. Conclusion: A fully customised cosmetic forequarter prosthesis was designed and developed using digital scanning, computer-aided design modelling and 3D printing for a specific user. These technologies enable new avenues for highly complex prosthetic design innovations.


2019 ◽  
Vol 9 (9) ◽  
pp. 1798 ◽  
Author(s):  
Son ◽  
Yu ◽  
Yoon ◽  
Lee

This study set out to compare the three-dimensional (3D) trueness of crowns produced from three types of lithium disilicate blocks. The working model was digitized, and single crowns (maxillary left second molar) were designed using computer-aided design (CAD) software. To produce a crown design model (CDM), a crown design file was extracted from the CAD software. In addition, using the CDM file and a milling machine (N = 20), three types of lithium disilicate blocks (e.max CAD, HASS Rosetta, and VITA Suprinity) were processed. To produce a crown scan model (CSM), the inner surface of each fabricated crown was digitized using a touch-probe scanner. In addition, using 3D inspection software, the CDM was partitioned (into marginal, axis, angular, and occlusal regions), the CDM and CSM were overlapped, and a 3D analysis was conducted. A Kruskal–Wallis test (α = 0.05) was conducted with all-segmented teeth with the root mean square (RMS), and they were analyzed using the Mann–Whitney U-test and the Bonferroni correction method as a post hoc test. There was a significant difference in the trueness of the crowns according to the type of lithium disilicate block (p < 0.001). The overall RMS value was at a maximum for e.max (42.9 ± 4.4 µm), followed by HASS (30.1 ± 9.0 µm) and then VITA (27.3 ± 7.9 µm). However, there was no significant difference between HASS and VITA (p = 0.541). There were significant differences in all regions inside the crown (p < 0.001). There was a significantly high trueness in the angular region inside the crown (p < 0.001). A correction could thus be applied in the CAD process, considering the differences in the trueness by the type of lithium disilicate block. In addition, to attain a crown with an excellent fit, it is necessary to provide a larger setting space for the angular region during the CAD process.


2020 ◽  
Vol 9 (3) ◽  
pp. 832 ◽  
Author(s):  
Dave Chamo ◽  
Bilal Msallem ◽  
Neha Sharma ◽  
Soheila Aghlmandi ◽  
Christoph Kunz ◽  
...  

The use of patient-specific implants (PSIs) in craniofacial surgery is often limited due to a lack of expertise and/or production costs. Therefore, a simple and cost-efficient template-based fabrication workflow has been developed to overcome these disadvantages. The aim of this study is to assess the accuracy of PSIs made from their original templates. For a representative cranial defect (CRD) and a temporo-orbital defect (TOD), ten PSIs were made from polymethylmethacrylate (PMMA) using computer-aided design (CAD) and three-dimensional (3D) printing technology. These customized implants were measured and compared with their original 3D printed templates. The implants for the CRD revealed a root mean square (RMS) value ranging from 1.128 to 0.469 mm with a median RMS (Q1 to Q3) of 0.574 (0.528 to 0.701) mm. Those for the TOD revealed an RMS value ranging from 1.079 to 0.630 mm with a median RMS (Q1 to Q3) of 0.843 (0.635 to 0.943) mm. This study demonstrates that a highly precise duplication of PSIs can be achieved using this template-molding workflow. Thus, virtually planned implants can be accurately transferred into haptic PSIs. This workflow appears to offer a sophisticated solution for craniofacial reconstruction and continues to prove itself in daily clinical practice.


Author(s):  
Tsz-Ho Kwok

Abstract The process planning of a manufacturing method is the key to ensure the quality of the fabricated part. In Additive Manufacturing (AM), slicing is a crucial step in process planning to convert a Computer-Aided Design (CAD) model to a machine-specific format. If the slicing results were incorrect, the manufacturing quality would have no way to be assured. Therefore, it is important to understand the performance of different slicing technologies for AM. Digital Light Processing (DLP) printing is an important AM process that has a good surface finish, high accuracy and fabrication speed, and is widely applied in many dental and engineering industries. However, while most other AM processes are toolpath-based, as a process that uses images as the fabrication tool, the DLP printing has its process planning understudied. Therefore, the main goal of this paper is to study, compare and benchmark the slicing technologies for DLP printing. Three slicing technologies are compared: contour, voxelization, and ray-tracing. They are tested with some common defects in slicing, and their usage in computational resources is also reported. The summary and suggestion are given at the end.


Author(s):  
Olufunmilola Atilola ◽  
Julie Linsey

AbstractMany tools are being developed to assist designers in retrieving analogies. One critical question these designers face is how these analogues should be represented in order to minimize design fixation and maximize idea generation. To address this question, an experiment is presented that compares various representations' influence on creativity and design fixation. This experiment presents an effective example (analogue) as computer-aided design (CAD), sketch, or photograph representations. We found that all representations induced fixation, and the degree of fixation did not vary significantly. We also found that CAD representations encourage engineering designers to identify and copy the key effective features of the example. CAD and photo representations also produced a higher quality of design concepts. Results from this experiment offer insights into how these various representations may be used in examples during idea generation; CAD representations appear to offer the greatest advantages during the idea generation process. The results from this experiment also indicate that analogical databases of effective design examples should include CAD and photolike images of the analogue rather than sketches.


Sign in / Sign up

Export Citation Format

Share Document