scholarly journals Lipoxygenase Enzymes, Oligosaccharides (Raffinose and Stachyose) and 11sA4 and A5 Globulins of Glycinin Present in Soybean Meal Are Not Drivers of Enteritis in Juvenile Atlantic Salmon (Salmo salar)

2021 ◽  
Vol 11 (19) ◽  
pp. 9327
Author(s):  
Artur N. Rombenso ◽  
David Blyth ◽  
Andrew T. James ◽  
Teisha Nikolaou ◽  
Cedric J. Simon

Soybean meal has been largely investigated and commercially used in fish nutrition. However, its inclusion levels have been carefully considered due to the presence of antinutritional factors, which depending on a series of factors might induce gut inflammation damaging the mucosal integrity and causing enteritis. Several strategies including genetic engineering have been applied attempting to reduce or eliminate some of the antinutritional factors. Accordingly, we assessed the intestinal health of juvenile Atlantic salmon fed high levels of speciality soybean genotypes with reduced-to-no content amounts of lipoxygenases, altered glycinin profile and reduced levels of oligosaccharides. No major signs of enteritis, only indication of enteritis progression, was noticed in the soybean meal-based diets illustrated by mild changes in distal intestine morphology. Whereas fish, fed fishmeal control feeds, displayed normal distal intestine integrity. Speciality soybean types did not improve intestinal health of juvenile Atlantic salmon suggesting these antinutrients are not drivers of the intestinal inflammatory process in this species. No additional benefits in terms of production performance or blood biochemistry were noticed in the speciality soybean types compared to the traditional soybean.

2020 ◽  
Vol 7 ◽  
Author(s):  
Jihong Dai ◽  
Weihao Ou ◽  
Guijuan Yu ◽  
Qinghui Ai ◽  
Wenbing Zhang ◽  
...  

This study aimed to investigate the benefit of dietary cecropin AD (CAD) on the intestinal health of turbot (Scophthalmus maximus) fed diets with a high level of soybean meal. A 12-week feeding trial was conducted with four isonitrogenous and isolipidic diets: a fishmeal-based diet (FM), a diet replacing 40% fish meal protein of FM diet with soybean meal protein (SBM), and the SBM diet supplemented with 0.5 g/kg (C1) and 1.0 g/kg (C2) CAD, respectively. The results of histology of distal intestine (DI) showed that turbots fed the SBM diet exhibited distinct symptoms of enteritis. However, fish fed diets with CAD supplementation kept the normal appearance of the DI which was similar to that in FM group. Compared with the SBM group, diet with CAD supplementation significantly decreased the gene expression of intestinal pro-inflammatory cytokines tumor necrosis factor-α (tnf-α), interleukin-1β (il-1β), interferon-gamma (ifn-γ), and nuclear factor-kappa B p65 (nf-κb p65), while up-regulated the gene expression of intestinal tight junction proteins claudin-3, claudin-4, occludin, and zonula occludens-1 (zo-1). Besides, diet C1 shaped the intestinal microbiota profile toward an anti-inflammatory phenotype represented by the increased abundance of Blutia, Firmicutes/Bacteroides ratio, and decreased Prevotellaceae. In conclusion, dietary CAD could positively modulate the intestinal health of turbot from the impairment induced by soybean meal, which expands its application to help fish better adapt to the increasing plant protein level in aquafeed.


Toxins ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 376 ◽  
Author(s):  
Torfinn Moldal ◽  
Aksel Bernhoft ◽  
Grethe Rosenlund ◽  
Magne Kaldhusdal ◽  
Erling Koppang

Impaired growth, immunity, and intestinal barrier in mammals, poultry, and carp have been attributed to the mycotoxin deoxynivalenol (DON). The increased use of plant ingredients in aquaculture feed implies a risk for contamination with mycotoxins. The effects of dietary DON were explored in 12-month-old Atlantic salmon (Salmo salar) (start weight of 58 g) that were offered a standard feed with non-detectable levels of mycotoxins (control group) or 5.5 mg DON/kg feed (DON group). Each group comprised two tanks with 25 fish per tank. Five fish from each tank were sampled eight weeks after the start of the feeding trial, when mean weights for the control and DON groups were 123.2 g and 80.2 g, respectively. The relative expression of markers for three tight junction proteins (claudin 25b, occludin, and tricellulin) were lower, whereas the relative expression of a marker for proliferating cell nuclear antigen was higher in both the mid-intestine and the distal intestine in fish fed DON compared with fish from the control group. The relative expression of markers for two suppressors of cytokine signaling (SOCS1 and SOCS2) were higher in the distal intestine in fish fed DON. There was no indication of inflammation attributed to the feed in any intestinal segments. Our findings suggest that dietary DON impaired the intestinal integrity, while an inflammatory response appeared to be mitigated by suppressors of cytokine signaling. A dysfunctional intestinal barrier may have contributed to the impaired production performance observed in the DON group.


2013 ◽  
Vol 34 (2) ◽  
pp. 599-609 ◽  
Author(s):  
Christian Sahlmann ◽  
Ben J.G. Sutherland ◽  
Trond M. Kortner ◽  
Ben F. Koop ◽  
Åshild Krogdahl ◽  
...  

2019 ◽  
Author(s):  
Felipe Eduardo Reveco-Urzua ◽  
Mette Hofossæter ◽  
Mallikarjuna Rao Kovi ◽  
Liv Torunn Mydland ◽  
Ragnhild Ånestad ◽  
...  

AbstractMicrobial ingredients such as Candida utilis yeast are known to be functional protein sources with immunemodulating effects whereas soybean meal causes soybean meal-induced enteritis in the distal intestine of Atlantic salmon (Salmo salar L.). Inflammatory or immunomodulatory stimuli at the local level in the intestine may alter the plasma proteome profile of Atlantic salmon. These deviations can be helpful indicators for fish health and therefore potential tools in diagnosis of fish diseases. The present work aimed to identify local intestinal tissue responses and changes in plasma protein profiles of Atlantic salmon fed inactive dry Candida utilis yeast biomass, soybean meal, or combination of soybean meal based diet with various inclusion levels of Candida utilis. A fishmeal based diet was used as control diet. Inclusion of Candida utilis yeast to a fishmeal based diet did not alter the morphology, immune cell population or gene expression of the distal intestine, but gave a plasma proteome profile different from the fishmeal based control. Lower levels of Candida utilis combined with soybean meal modulated immune cell populations in the distal intestine and reduced the severity of soybean meal-induced enteritis, while higher inclusion levels of Candida utilis were less effective. The results suggest that Candida utilis could induce systemic responses without altering intestinal morphology, and thus could be a high-quality alternative protein source with potential functional properties in diets for Atlantic salmon.


Sign in / Sign up

Export Citation Format

Share Document