scholarly journals Through-Floor Vital Sign Searching for Trapped Person Using Wireless-Netted UWB Radars

2021 ◽  
Vol 11 (22) ◽  
pp. 10538
Author(s):  
Zhenghuan Xia ◽  
Shiyou Wu ◽  
Xin Liu ◽  
Huifeng Shi ◽  
Shichao Jin ◽  
...  

In personnel rescue applications, considerable attention has been paid to the positioning method of living persons. Especially, the effective vital sign searching is urgently required. This work presents an effective multiple-observation-points-based vital sign searching method for trapped persons using wireless-netted ultra-wideband (UWB) radars. Controlled by a wireless network, four UWB radars are connected to form a group. Based on that, we design an optimized searching path strategy and the corresponding vital sign searching procedure. The simulated result illustrates the proposed vital sign searching strategy on the spatial locations of the trapped person. Finally, the proof-of-principle through-floor experiment was also carried out, verifying the performance of this proposed vital sign searching algorithm.

2021 ◽  
Vol 2078 (1) ◽  
pp. 012070
Author(s):  
Qianrong Zhang ◽  
Yi Li

Abstract Ultra-wideband (UWB) has broad application prospects in the field of indoor localization. In order to make up for the shortcomings of ultra-wideband that is easily affected by the environment, a positioning method based on the fusion of infrared vision and ultra-wideband is proposed. Infrared vision assists locating by identifying artificial landmarks attached to the ceiling. UWB uses an adaptive weight positioning algorithm to improve the positioning accuracy of the edge of the UWB positioning coverage area. Extended Kalman filter (EKF) is used to fuse the real-time location information of the two. Finally, the intelligent mobile vehicle-mounted platform is used to collect infrared images and UWB ranging information in the indoor environment to verify the fusion method. Experimental results show that the fusion positioning method is better than any positioning method, has the advantages of low cost, real-time performance, and robustness, and can achieve centimeter-level positioning accuracy.


2012 ◽  
Vol 229-231 ◽  
pp. 1373-1376
Author(s):  
Xiao Dong Tu ◽  
Hao Zhang ◽  
Xue Rong Cui ◽  
Xing Liu

The paper proposes a mono-station TOA/AOA positioning method based on ultra-wideband (UWB) antenna array. The article calculates accurately the signal's angle of arrival (AOA) by measurement of the UWB-pulse amplitude of the reference base-station antenna array received, combined with the antenna beam pattern. With the estimation of the information of arrival time using the skewness and the maximum slope, the location of the label can be found. The ranging error of the localization algorithm can achieve centimeter-level and angle of arrival is less than or equal to 1.0.In the paper, the accuracy of positioning method is not affected, eliminating the high-precision synchronization requirements of the traditional reference base-station and significantly reducing the system requirements of clock accuracy and system complexity.


2017 ◽  
Vol 34 (1) ◽  
pp. 77-89
Author(s):  
Shyang-Jye Chang ◽  
Ray-Hong Wang

Purpose The motion vector estimation algorithm is very widely used in many image process applications, such as the image stabilization and object tracking algorithms. The conventional searching algorithm, based on the block matching manipulation, is used to estimate the motion vectors in conventional image processing algorithms. During the block matching manipulation, the violent motion will result in greater amount of computation. However, too large amount of calculation will reduce the effectiveness of the motion vector estimation algorithm. This paper aims to present a novel searching method to estimate the motion vectors effectively. Design/methodology/approach This paper presents a novel searching method to estimate the motion vectors for high-resolution image sequences. The searching strategy of this algorithm includes three steps: the larger area searching, the adaptive directional searching and the small area searching. Findings The achievement of this paper is to develop a motion vector searching strategy to improve the computation efficiency. Compared with the conventional motion vector searching algorithms, the novel motion vector searching algorithm can reduce the motion matching manipulation effectively by 50 per cent. Originality/value This paper presents a novel searching strategy to estimate the motion vectors effectively. From the experimental results, the novel motion vector searching algorithm can reduce the motion matching manipulation effectively, compared with the conventional motion vector searching algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5735
Author(s):  
Somayyeh Chamaani ◽  
Alireza Akbarpour ◽  
Marko Helbig ◽  
Jürgen Sachs

Microwave sensors have recently been introduced as high-temporal resolution sensors, which could be used in the contactless monitoring of artery pulsation and breathing. However, accurate and efficient signal processing methods are still required. In this paper, the matrix pencil method (MPM), as an efficient method with good frequency resolution, is applied to back-reflected microwave signals to extract vital signs. It is shown that decomposing of the signal to its damping exponentials fulfilled by MPM gives the opportunity to separate signals, e.g., breathing and heartbeat, with high precision. A publicly online dataset (GUARDIAN), obtained by a continuous wave microwave sensor, is applied to evaluate the performance of MPM. Two methods of bandpass filtering (BPF) and variational mode decomposition (VMD) are also implemented. In addition to the GUARDIAN dataset, these methods are also applied to signals acquired by an ultra-wideband (UWB) sensor. It is concluded that when the vital sign is sufficiently strong and pure, all methods, e.g., MPM, VMD, and BPF, are appropriate for vital sign monitoring. However, in noisy cases, MPM has better performance. Therefore, for non-contact microwave vital sign monitoring, which is usually subject to noisy situations, MPM is a powerful method.


2019 ◽  
Vol 12 (1) ◽  
pp. 44
Author(s):  
Fengchun Yin ◽  
Jun Yin

With the development of wireless network and the wide application of pervasive computing technology, the location-based service (LBS) needs more and more location information for mobile users. At present, the outdoor positioning system based on satellite signals has been very mature, but it can not be applied in the complex indoor environment. Therefore, indoor positioning technology has rapidly become a research hotspot. At the same time, the rapid development of wireless network technology, because of its fast communication speed, easy deployment and other characteristics, WiFi-based indoor positioning technology has been widely concerned and studied. Therefore, this paper takes an economic WiFi-based indoor positioning method as the research foundation, and studies the corresponding improved algorithm aiming at the existing problems.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5824
Author(s):  
Dongqi Gao ◽  
Xiangye Zeng ◽  
Jingyi Wang ◽  
Yanmang Su

Various indoor positioning methods have been developed to solve the “last mile on Earth”. Ultra-wideband positioning technology stands out among all indoor positioning methods due to its unique communication mechanism and has a broad application prospect. Under non-line-of-sight (NLOS) conditions, the accuracy of this positioning method is greatly affected. Unlike traditional inspection and rejection of NLOS signals, all base stations are involved in positioning to improve positioning accuracy. In this paper, a Long Short-Term Memory (LSTM) network is used while maximizing the use of positioning equipment. The LSTM network is applied to process the raw Channel Impulse Response (CIR) to calculate the ranging error, and combined with the improved positioning algorithm to improve the positioning accuracy. It has been verified that the accuracy of the predicted ranging error is up to centimeter level. Using this prediction for the positioning algorithm, the average positioning accuracy improved by about 62%.


2021 ◽  
Author(s):  
Vittorio Memmolo ◽  
Jochen Moll ◽  
Duy Hai Nguyen ◽  
Viktor Krozer ◽  
Jakob Holstein ◽  
...  

Abstract Guided electromagnetic wave propagation using ultra-wideband signals is a barely new approach for damage detection. However, still many challenges are present, including the way to deal with the GHz domain signals and the physics behind the interaction phenomena enabled by any type of flaw. The present work proposes a feasibility analysis for a structural health monitoring system employing permanently integrated microwave sensors. This setup allows to interrogate the structure continuously using multiple transmitters and multiple receivers when the electromagnetic waveguide is established. To this end, a metallic plate is equipped with a dielectric waveguide patch attached to the structures’ surface. To validate the detectability of damage, a reversible defect is modeled through removable bolts accessible from the other surface of the plate. The experiments are carried out considering different bottom holes at different spatial locations of the plate. In addition, concurrent measurements are adopted to characterize the noise level within the signal. The characteristic changes of electromagnetic wave signals are caught using a damage index approach returning whether the defect can be detected sensitively or not. Different coupling conditions are used to let the guided electromagnetic waves propagate and interact with underlaying structure. The results show that this approach can be adopted for damage detection with a reasonable signal to noise ratio, especially when the waveguide is well coupled. In addition, both transmission and reflection loss can be monitored reliably.


2021 ◽  
Vol 13 (18) ◽  
pp. 3791
Author(s):  
Xiuzhu Yang ◽  
Xinyue Zhang ◽  
Yi Ding ◽  
Lin Zhang

The monitoring of human activity and vital signs plays a significant role in remote health-care. Radar provides a non-contact monitoring approach without privacy and illumination concerns. However, multiple people in a narrow indoor environment bring dense multipaths for activity monitoring, and the received vital sign signals are heavily distorted with body movements. This paper proposes a framework based on Frequency Modulated Continuous Wave (FMCW) and Impulse Radio Ultra-Wideband (IR-UWB) radars to address these challenges, designing intelligent spatial-temporal information fusion for activity and vital sign monitoring. First, a local binary pattern (LBP) and energy features are extracted from FMCW radar, combined with the wavelet packet transform (WPT) features on IR-UWB radar for activity monitoring. Then the additional information guided fusing network (A-FuseNet) is proposed with a modified generative and adversarial structure for vital sign monitoring. A Cascaded Convolutional Neural Network (CCNN) module and a Long Short Term Memory (LSTM) module are designed as the fusion sub-network for vital sign information extraction and multisensory data fusion, while a discrimination sub-network is constructed to optimize the fused heartbeat signal. In addition, the activity and movement characteristics are introduced as additional information to guide the fusion and optimization. A multi-radar dataset with an FMCW and two IR-UWB radars in a cotton tent, a small room and a wide lobby is constructed, and the accuracies of activity and vital sign monitoring achieve 99.9% and 92.3% respectively. Experimental results demonstrate the superiority and robustness of the proposed framework.


Sign in / Sign up

Export Citation Format

Share Document