scholarly journals Application of Artificial Neural Networks to Predict Insulation Properties of Lightweight Concrete

2021 ◽  
Vol 11 (22) ◽  
pp. 10544
Author(s):  
Marzena Kurpińska ◽  
Leszek Kułak ◽  
Tadeusz Miruszewski ◽  
Marcin Byczuk

Predicting the properties of concrete before its design and application process allows for refining and optimizing its composition. However, the properties of lightweight concrete are much harder to predict than those of normal weight concrete, especially if the forecast concerns the insulating properties of concrete with artificial lightweight aggregate (LWA). It is possible to use porous aggregates and precisely modify the composition of lightweight concrete (LWC) with specific insulating properties. In this case, it is advisable to determine the parameters of the components and perform preliminary laboratory tests, and then use theoretical methods (e.g., artificial neural networks (ANNs) to predict not only the mechanical properties of lightweight concrete, but also its thermal insulation properties. Fifteen types of lightweight concrete, differing in light filler, were tested. Lightweight aggregates with different grain diameters and lightweight aggregate grains with different porosity were used. For the tests, expanded glass was applied as a filler with very good thermal insulation properties and granulated sintered fly ash, characterized by a relatively low density and high crushing strength in the group of LWAs. The aim of the work is to demonstrate the usefulness of an ANN for the determination of the relationship between the selection of the type and quantity of LWA and porosity, density, compressive strength, and thermal conductivity (TC) of the LWC.

2010 ◽  
Vol 3 (2) ◽  
pp. 195-204 ◽  
Author(s):  
W.G Moravia ◽  
A. G. Gumieri ◽  
W. L. Vasconcelos

Nowadays lightweight concrete is used on a large scale for structural purposes and to reduce the self-weight of structures. Specific grav- ity, compressive strength, strength/weight ratio and modulus of elasticity are important factors in the mechanical behavior of structures. This work studies these properties in lightweight aggregate concrete (LWAC) and normal-weight concrete (NWC), comparing them. Spe- cific gravity was evaluated in the fresh and hardened states. Four mixture proportions were adopted to evaluate compressive strength. For each proposed mixture proportion of the two concretes, cylindrical specimens were molded and tested at ages of 3, 7 and 28 days. The modulus of elasticity of the NWC and LWAC was analyzed by static, dynamic and empirical methods. The results show a larger strength/ weight ratio for LWAC, although this concrete presented lower compressive strength.


2018 ◽  
Vol 195 ◽  
pp. 01021
Author(s):  
Fedya Diajeng Aryani ◽  
Tavio ◽  
I Gusti Putu Raka ◽  
Puryanto

Lightweight concrete is one of the options used in construction in lieu of the traditional normal-weight concrete. Due to its lightweight, it provides lighter structural members and thus, it reduces the total weight of the structures. The reduction in weight resulting in the reduction of the seismic forces since its density is less than 1840 kg/m3. Among all of the concrete constituents, coarse aggregate takes the highest portion of the concrete composition. To produce the lightweight characteristics, it requires innovation on the coarse aggregate to come up with low density of concrete. One possible way is to introduce the use of the artificial lightweight aggregate (ALWA). This study proposes the use of polystyrene as the main ingredient to form the ALWA. The ALWA concrete in the study also used two types of Portland cements, i.e. OPC and PPC. The ALWA introduced in the concrete comprises various percentages, namely 0%, 15%, 50%, and 100% replacement to the coarse aggregate by volume. From the results of the study, it can be found that the compressive strength and the modulus of elasticity of concrete decreased with the increase of the percentage of the ALWA used to replace the natural coarse aggregate.


Materials ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2002 ◽  
Author(s):  
Marzena Kurpinska ◽  
Leszek Kułak

Lightweight concrete (LWC) is a group of cement composites of the defined physical, mechanical, and chemical performance. The methods of designing the composition of LWC with the assumed density and compressive strength are used most commonly. The purpose of using LWC is the reduction of the structure’s weight, as well as the reduction of thermal conductivity index. The highest possible strength, durability and low thermal conductivity of construction materials are important factors and reasons for this field’s development, which lies largely in modification of materials’ composition. Higher requirements for construction materials are related to activities aiming at environment protection. The purpose of the restrictions is the reduction of energy consumption and, as a result, the reduction of CO2 emission. To limit the scope of time-consuming and often high-cost laboratory works necessary to calibrate models used in the test methods, it is possible to apply Artificial Neural Networks (ANN) to predict any of the concrete properties. The aim of this study is to demonstrate the applicability of this tool for solving the problems, related to establishing the relation between the choice of type and quantity of lightweight aggregates and the porosity, bulk density and compressive strength of LWC. For the tests porous lightweight Granulated Expanded Glass Aggregate (GEGA) and Granulated Ash Aggregate (GAA) have been used.


Author(s):  
Christopher Collins ◽  
Saman Hedjazi

In the present study, a non-destructive testing method was utilized to assess the mechanical properties of lightweight and normal-weight concrete specimens. The experiment program consisted of more than a hundred concrete specimens with the unit weight ranging from around 850 to 2250 kg/m3. Compressive strength tests were performed at the age of seven and twenty eight days. Ultrasonic Pulse Velocity (UPV) was the NDT that was implemented in this study to investigate the significance of the correlation between UPV and compressive strength of lightweight concrete specimens. Water to cement ratio (w/c), mix designs, aggregate volume, and the amount of normal weight coarse and fine aggregates replaced with lightweight aggregate, are the variables in this work. The lightweight aggregate used in this study, Poraver®, is a product of recycled glass materials. Furthermore, the validity of the current prediction methods in the literature was investigated including comparison between this study and an available expression in the literature on similar materials, for calculation of mechanical properties of lightweight concrete based on pulse velocity. It was observed that the recently developed empirical equation would better predict the compressive strength of lightweight concrete specimens in terms of the pulse velocity.


2010 ◽  
Vol 168-170 ◽  
pp. 2235-2240
Author(s):  
How Ji Chen ◽  
Wen Po Tsai ◽  
Ming Der Yang

A kind of lightweight aggregate (LWA) has been successfully developed in Taiwan, which was made by expanding under heat fine sediments dredged from the Shihmen Reservoir. In this study the performances of concrete made from the aforementioned LWA were tested and compared with those of the companion normal weight concrete (NC). The test results show that the so produced lightweight concrete (LWAC) exhibited a comparable time-dependent properties (i.e., compressive strength, elastic modulus, drying shrinkage, and creep) as compared with those of the companion NC. Based on the results, it can be concluded that the use of prewetted LWAs and the incorporation of pozzolan materials can effectively control the drying shrinkage of LWAC. The specific creep of the LC mixture was obviously higher than that of the NC mixture at the same curing time.


2012 ◽  
Vol 626 ◽  
pp. 344-349 ◽  
Author(s):  
Maryam Mortazavi ◽  
Mojtaba Majlessi

The purpose of this paper is to evaluate the effect of silica fume on compressive strength of structural lightweight concrete, containing saturated LECA (Light Expanded Clay Aggregate) as lightweight aggregate (LWA). In experimental phase of study 120 cubic specimens (10*10*10) were made and cured. For every mix design, different cement percentages were replaced with silica fume, containing same amount of saturated LECA. The mixes incorporate 0%, 5%, 10%, 15%, 20%, 25% silica fume. Constant level of Water/Cement ratio (0.37) was considered. For each mix design 20 specimens were prepared and cured for 7, 14, 28, 42 days in standard 20 C water. Also 20 specimens with the same mix design of 0% silica fume as normal weight concrete were prepared and cured to compare the results. For these specimens LECA were replaced with same volume and size of sand. The testing results showed; increasing silica fume causes considerable increase in compressive strength. The rate of strength gain slows down at high percentage of silica fume. Also silica fume leads concrete to get higher initial compressive strength at certain time compared with normal weight concrete.


2018 ◽  
Vol 30 (1) ◽  
pp. 82-100
Author(s):  
Anna Katarzyna Dabrowska

Purpose The purpose of this paper is to develop artificial neural networks (ANNs) allowing us to simulate the local thermal insulation of clothing protecting against cold on a basis of the characteristics of materials and design solutions used. Design/methodology/approach For this purpose, laboratory tests of thermal insulation of clothing protecting against cold as well as thermal resistance of textile systems used in the clothing were performed. These tests were conducted with a use of thermal manikin and so-called skin model, respectively. On a basis of results gathered, 12 ANNs were developed that correspond to each thermal manikin’s segment besides hands and feet which are not covered by protective clothing. Findings In order to obtain high level of simulations, optimization measures for the developed ANNs were introduced. Finally, conducted validation indicated a very high correlation (above 0.95) between theoretical and experimental results, as well as a low error of the simulations (max 8 percent). Originality/value The literature reports addressing the problem of modeling thermal insulation of clothing focus mainly on the impact of the degree of fit and the velocity of air movement on thermal insulation properties, whereas reports dedicated to modeling the impact of the construction of clothing protecting against cold as well as of diverse material systems used within one design of clothing on its thermal insulation are scarce.


Author(s):  
Aravind Tankasala ◽  
Anton K. Schindler ◽  
Kyle A. Riding

This paper describes the results of a numerical investigation of incorporating lightweight aggregate (LWA) in mass concrete structures. Numerical simulation was performed with ConcreteWorks software on three rectangular piers for normal weight concrete, internally cured concrete, sand–lightweight concrete, and all–lightweight concrete. Results show that temperature differences greater than 35°F may not necessarily introduce thermal cracking in mass concrete made with LWA. Maximum core temperatures and temperature differences increased with decreasing concrete density; however, the cracking risk of the mass concrete elements decreased as a greater quantity of LWA was used, regardless of element size. This trend occurred because other properties, such as coefficient of thermal expansion, creep, modulus of elasticity, tensile strength, and geometrical conditions, influenced the risk of thermal cracking. Additionally, the identification of the cross-section locations involved in measuring the critical temperature difference in a mass concrete structure are presented. The results of this work can be helpful in identifying critical stress locations in cross sections and assessing the cracking risk for mass concrete structures. A temperature and stress analysis is recommended before mass concrete construction involving LWA is begun.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3050 ◽  
Author(s):  
Khan ◽  
Usman ◽  
Rizwan ◽  
Hanif

This paper assesses the mechanical and structural behavior of self-consolidating lightweight concrete (SCLWC) incorporating bloated shale aggregate (BSA). BSA was manufactured by expanding shale pellets of varying sizes by heating them up to a temperature of 1200 °C using natural gas as fuel in the rotary kiln. Fly ash (FA) and limestone powder (LSP) were used as supplementary cementing materials (10% replacement of cement, each for LSP and FA) for improved properties of the resulting concrete. The main parameters studied in this experimental study were compressive strength, elastic modulus, and microstructure. The fresh-state properties (Slump flow, V-funnel, J-Ring, and L-box) showed adequate rheological behavior of SCLWC in comparison with self-consolidating normal weight concrete (SCNWC). There was meager (2%–4%) compressive strength reduction of SCLWC. Lightweight aggregate tended to shift concrete behavior from ductile to brittle, causing reduced strain capacity and flexural toughness. FA and LSP addition significantly improved the strength and microstructure at all ages. The study is encouraging for the structural use of lightweight concrete, which could reduce the overall construction cost.


Sign in / Sign up

Export Citation Format

Share Document