scholarly journals Efficiency factor and modulus of elasticity of lightweight concrete with expanded clay aggregate

2010 ◽  
Vol 3 (2) ◽  
pp. 195-204 ◽  
Author(s):  
W.G Moravia ◽  
A. G. Gumieri ◽  
W. L. Vasconcelos

Nowadays lightweight concrete is used on a large scale for structural purposes and to reduce the self-weight of structures. Specific grav- ity, compressive strength, strength/weight ratio and modulus of elasticity are important factors in the mechanical behavior of structures. This work studies these properties in lightweight aggregate concrete (LWAC) and normal-weight concrete (NWC), comparing them. Spe- cific gravity was evaluated in the fresh and hardened states. Four mixture proportions were adopted to evaluate compressive strength. For each proposed mixture proportion of the two concretes, cylindrical specimens were molded and tested at ages of 3, 7 and 28 days. The modulus of elasticity of the NWC and LWAC was analyzed by static, dynamic and empirical methods. The results show a larger strength/ weight ratio for LWAC, although this concrete presented lower compressive strength.

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1187 ◽  
Author(s):  
Lucyna Domagała

The aim of this paper is to discuss the unrecognized problem of the scale effect in compressive strength tests determined for cored specimens of lightweight aggregate concrete (LWAC) against the background of available data on the effect for normal-weight concrete (NWAC). The scale effect was analyzed taking into consideration the influence of slenderness (λ = 1.0, 1.5, 2.0) and diameter (d = 80, 100, 125, and 150 mm) of cored specimens, as well as the type of lightweight aggregate (expanded clay and sintered fly ash) and the type of cement matrix (w/c = 0.55 and 0.37). The analysis of the results for four lightweight aggregate concretes revealed no scale effect in compressive strength tests determined on cored specimens. Neither the slenderness, nor the core diameter seemed to affect the strength results. This fact should be explained by the considerably better structural homogeneity of the tested lightweight concretes in comparison to normal-weight ones. Nevertheless, there were clear differences between the results obtained on molded and cored specimens of the same shape and size.


2018 ◽  
Vol 195 ◽  
pp. 01021
Author(s):  
Fedya Diajeng Aryani ◽  
Tavio ◽  
I Gusti Putu Raka ◽  
Puryanto

Lightweight concrete is one of the options used in construction in lieu of the traditional normal-weight concrete. Due to its lightweight, it provides lighter structural members and thus, it reduces the total weight of the structures. The reduction in weight resulting in the reduction of the seismic forces since its density is less than 1840 kg/m3. Among all of the concrete constituents, coarse aggregate takes the highest portion of the concrete composition. To produce the lightweight characteristics, it requires innovation on the coarse aggregate to come up with low density of concrete. One possible way is to introduce the use of the artificial lightweight aggregate (ALWA). This study proposes the use of polystyrene as the main ingredient to form the ALWA. The ALWA concrete in the study also used two types of Portland cements, i.e. OPC and PPC. The ALWA introduced in the concrete comprises various percentages, namely 0%, 15%, 50%, and 100% replacement to the coarse aggregate by volume. From the results of the study, it can be found that the compressive strength and the modulus of elasticity of concrete decreased with the increase of the percentage of the ALWA used to replace the natural coarse aggregate.


Author(s):  
Christopher Collins ◽  
Saman Hedjazi

In the present study, a non-destructive testing method was utilized to assess the mechanical properties of lightweight and normal-weight concrete specimens. The experiment program consisted of more than a hundred concrete specimens with the unit weight ranging from around 850 to 2250 kg/m3. Compressive strength tests were performed at the age of seven and twenty eight days. Ultrasonic Pulse Velocity (UPV) was the NDT that was implemented in this study to investigate the significance of the correlation between UPV and compressive strength of lightweight concrete specimens. Water to cement ratio (w/c), mix designs, aggregate volume, and the amount of normal weight coarse and fine aggregates replaced with lightweight aggregate, are the variables in this work. The lightweight aggregate used in this study, Poraver®, is a product of recycled glass materials. Furthermore, the validity of the current prediction methods in the literature was investigated including comparison between this study and an available expression in the literature on similar materials, for calculation of mechanical properties of lightweight concrete based on pulse velocity. It was observed that the recently developed empirical equation would better predict the compressive strength of lightweight concrete specimens in terms of the pulse velocity.


2019 ◽  
Vol 27 (2) ◽  
pp. 64-73
Author(s):  
Sajjad abdulameer Badar ◽  
Laith Shakir Rasheed ◽  
Shakir Ahmed Salih

This paper aims to investigate the structural behavior of reinforced lightweight concrete beams. Attapulgite aggregate and crushed clay brick aggregate were used as coarse lightweight aggregate to produce structural lightweight aggregate concrete with 25 Mpa and 43.6 Mpa cube compressive strength and 1805 Kg/m3 and 1977 Kg/m3 oven dry density respectively. The result of reinforced lightweight concrete beams compared with reinforced normal weight concrete beams, which have 50.5 Mpa cylinder compressive strength and 2317 Kg/m3 oven dry density. For each type of concrete two reinforced concrete beams with (1200 mm length × 180 mm height × 140 mm width), one of them tested under symmetrical two-points load STPL (a/d = 2.2) and another one tested under one-point load OPL (a/d=3.3) at 28 days. The experimental program shows that a structural lightweight aggregate concrete can be produced by using Attapulgite aggregate with 25 MPa cube compressive strength and 1805 Kg/m3 oven dry density and by using crushed clay brick aggregate with 43.6 MPa cube compressive strength and 1977 Kg/m3 oven dry density. The weight of Attapulgite aggregate concrete and crushed clay bricks aggregate concrete beam specimens were lower than normal weight aggregate concrete beams by about 20.56% and 13.65% respectively at 28 days.  As for the ultimate load capacities of beam specimens, the ultimate load of Attapulgite aggregate concrete beams tested under STPL were lower than that of crushed clay bricks aggregate concrete beams and normal weight aggregate concrete beams by about 4.85% and 5% respectively. While the ultimate load capacities of reinforced Attapulgite concrete beams tested under OPL were lower than that of reinforced crushed clay bricks aggregate concrete beams and reinforced normal weight aggregate concrete beams by about 10.3% and 10.5% respectively. Finally, Attapulgite aggregate concrete and crushed clay bricks aggregate concrete showed ductility and toughness less than that of Normal weight aggregate concrete.


2012 ◽  
Vol 626 ◽  
pp. 344-349 ◽  
Author(s):  
Maryam Mortazavi ◽  
Mojtaba Majlessi

The purpose of this paper is to evaluate the effect of silica fume on compressive strength of structural lightweight concrete, containing saturated LECA (Light Expanded Clay Aggregate) as lightweight aggregate (LWA). In experimental phase of study 120 cubic specimens (10*10*10) were made and cured. For every mix design, different cement percentages were replaced with silica fume, containing same amount of saturated LECA. The mixes incorporate 0%, 5%, 10%, 15%, 20%, 25% silica fume. Constant level of Water/Cement ratio (0.37) was considered. For each mix design 20 specimens were prepared and cured for 7, 14, 28, 42 days in standard 20 C water. Also 20 specimens with the same mix design of 0% silica fume as normal weight concrete were prepared and cured to compare the results. For these specimens LECA were replaced with same volume and size of sand. The testing results showed; increasing silica fume causes considerable increase in compressive strength. The rate of strength gain slows down at high percentage of silica fume. Also silica fume leads concrete to get higher initial compressive strength at certain time compared with normal weight concrete.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3050 ◽  
Author(s):  
Khan ◽  
Usman ◽  
Rizwan ◽  
Hanif

This paper assesses the mechanical and structural behavior of self-consolidating lightweight concrete (SCLWC) incorporating bloated shale aggregate (BSA). BSA was manufactured by expanding shale pellets of varying sizes by heating them up to a temperature of 1200 °C using natural gas as fuel in the rotary kiln. Fly ash (FA) and limestone powder (LSP) were used as supplementary cementing materials (10% replacement of cement, each for LSP and FA) for improved properties of the resulting concrete. The main parameters studied in this experimental study were compressive strength, elastic modulus, and microstructure. The fresh-state properties (Slump flow, V-funnel, J-Ring, and L-box) showed adequate rheological behavior of SCLWC in comparison with self-consolidating normal weight concrete (SCNWC). There was meager (2%–4%) compressive strength reduction of SCLWC. Lightweight aggregate tended to shift concrete behavior from ductile to brittle, causing reduced strain capacity and flexural toughness. FA and LSP addition significantly improved the strength and microstructure at all ages. The study is encouraging for the structural use of lightweight concrete, which could reduce the overall construction cost.


2011 ◽  
Vol 17 (1) ◽  
pp. 36-44 ◽  
Author(s):  
Lucyna Domagała

Structural lightweight aggregate concrete (SLWAC) is an alternative building material to normal-weight one, due to its ability to reach a relatively high compressive strength at still significantly lower density. Nevertheless, the application of lightweight aggregate instead of normal-weight one to concrete must result in deterioration of some characteristics of the composite. One of the methods of improving SLWAC properties is incorporation of fibers into concrete. This paper focuses on the influence of steel fibres on modification of properties of structural lightweight concrete with sintered fly ash aggregate. Two different concrete mixtures, producing various levels of matured composite density and compressive strength, were modified with three dosages of fibers: 30, 45 and 60 kg/m3. The applied amounts did not result in significant deterioration of the rheological parameters of concrete mixtures. Despite relatively low volume content of fibres, a considerable increase of flexural and tensile splitting strength was observed. Fibres also improved concrete shrinkage as well as post-peak deformability in uni-axial compression. The effect of steel addition on compressive strength proved to be dependent on specimen type. Nevertheless, it was not as crucial as in the case of the above characteristics. However, the modulus of elasticity of SLWAC was not affected by fibre addition. Santrauka Konstrukcinis su lengvaisiais užpildais betonas (SLWAC) yra normalaus svorio statybinių medžiagų alternatyva, turinti mažesnį tankį ir gebėjimą pasiekti gana didelį gniuždomąjį stiprį. Nepaisant to, lengvieji užpildai, naudojami vietoj normalaus svorio užpildų, realiai gali pabloginti kai kurias kompozito savybes. Vienas iš lengvojo betono SLWAC savybių tobulinimo būdų yra plieninių fibrų įterpimas į betono sudėtį. Šiame darbe aptariamas plieninių fibrų poveikis konstrukcinio lengvojo betono su lakiaisiais pelenais savybėms. Tikslui pasiekti buvo parinktos pagal tankį ir gniuždomąjį stiprį dvi skirtingos betono sudėtys su skirtingais (30, 45 ir 60 kg/m3) plieninių fibrų tankiais. Paruošti bandiniai buvo naudoti gniuždomajam stipriui ir kitoms savybėms nustatyti. Tyrimų rezultatai parodė, kad plieninių fibrų priedas nepablogino reologinių betono mišinio rodiklių. Nepaisant palyginti mažo fibrų kiekio, labai padidėjo bandinių lenkiamasis ir tempiamasis stipris. Fibros taip pat pagerino deformacines betono savybes. Gauto kompozito gniuždomasis stipris iš dalies priklausė nuo naudojamų plieninių fibrų charakteristikų. Tačiau plieninių fibrų priedas nepakeitė SLWAC tamprumo modulio.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Suman Kumar Adhikary ◽  
Žymantas Rudžionis ◽  
Simona Tučkutė ◽  
Deepankar Kumar Ashish

AbstractThis study is aimed to investigate the effect of carbon nanotubes on the properties of lightweight aggregate concrete containing expanded glass and silica aerogel. Combinations of expanded glass (55%) and hydrophobic silica aerogel particles (45%) were used as lightweight aggregates. Carbon nanotubes were sonicated in the water with polycarboxylate superplasticizer by ultrasonication energy for 3 min. Study results show that incorporating multi-wall carbon nanotubes significantly influences the compressive strength and microstructural performance of aerogel based lightweight concrete. The addition of carbon nanotubes gained almost 41% improvement in compressive strength. SEM image of lightweight concrete shows a homogeneous dispersal of carbon nanotubes within the concrete structure. SEM image of the composite shows presence of C–S–H gel surrounding the carbon nanotubes, which confirms the cites of nanotubes for the higher growth of C–S–H gel. Besides, agglomeration of carbon nanotubes and the presence of ettringites was observed in the transition zone between the silica aerogel and cementitious materials. Additionally, flowability, water absorption, microscopy, X-ray powder diffraction, and semi-adiabatic calorimetry results were analyzed in this study.


2013 ◽  
Vol 857 ◽  
pp. 105-109
Author(s):  
Xiu Hua Zheng ◽  
Shu Jie Song ◽  
Yong Quan Zhang

This paper presents an experimental study on the permeability and the pore structure of lightweight concrete with fly ash, zeolite powder, or silica fume, in comparison to that of normal weight aggregate concrete. The results showed that the mineral admixtures can improve the anti-permeability performance of lightweight aggregate concrete, and mixed with compound mineral admixtures further more. The resistance to chloride-ion permeability of light weight concrete was higher than that of At the same strength grade, the anti-permeability performance of lightweight aggregate concrete is better than that of normal weight aggregate concrete. The anti-permeability performance of LC40 was similar to that of C60. Mineral admixtures can obviously improve the pore structure of lightweight aggregate concrete, the total porosity reduced while the pore size decreased.


2018 ◽  
Vol 8 (8) ◽  
pp. 1324 ◽  
Author(s):  
How-Ji Chen ◽  
Chung-Hao Wu

Expanded shale lightweight aggregates, as the coarse aggregates, were used to produce lightweight aggregate concrete (LWAC) in this research. At the fixed water-cement ratio, paste quantity, and aggregate volume, the effects of various aggregate gradations on the engineering properties of LWAC were investigated. Comparisons to normal-weight concrete (NWC) made under the same conditions were carried out. From the experimental results, using normal weight aggregates that follow the specification requirements (standard gradation) obtained similar NWC compressive strength to that using uniform-sized aggregates. However, the compressive strength of LWAC made using small uniform-sized aggregates was superior to that made from standard-grade aggregates. This is especially conspicuous under the low water-cement ratio. Even though the workability was affected, this problem could be overcome with developed chemical additive technology. The durability properties of concrete were approximately equal. Therefore, it is suggested that the aggregate gradation requirement of LWAC should be distinct from that of NWC. In high strength LWAC proportioning, following the standard gradation suggested by American Society for Testing and Materials (ASTM) is optional.


Sign in / Sign up

Export Citation Format

Share Document