scholarly journals Model-Based Methods to Produce Greener Metakaolin Composite Concrete

2021 ◽  
Vol 11 (22) ◽  
pp. 10704
Author(s):  
Ki-Bong Park ◽  
Run-Sheng Lin ◽  
Yi Han ◽  
Xiao-Yong Wang

Metakaolin is reactive and is widely used in the modern concrete industry. This study presents an integrated strength–sustainability evaluation framework, which we employed in the context of metakaolin content in concrete. First, a composite hydration model was employed to calculate reactivity of metakaolin and cement. Furthermore, a hydration-based linear equation was designed to evaluate the compressive strength development of metakaolin composite concrete. The coefficients of the strength evaluation model are constants for different mixtures and ages. Second, the sustainability factors—CO2 emissions, resource consumption, and energy consumption—were determined based on concrete mixtures. Moreover, the sustainability factors normalized for unit strength were obtained based on the ratios of total CO2 emissions, energy consumption, and resource consumption to concrete strength. The results of our analysis showed the following: (1) As the metakaolin content increased, the normalized CO2 emissions and resource consumption decreased, and the normalized energy first decreased and then slightly increased. (2) As the concrete aged from 28 days to three months, the normalized CO2 emissions, resource consumption, and energy consumption decreased. (3) As the water/binder ratio decreased, the normalized CO2 emissions, resource consumption, and energy consumption decreased. Summarily, the proposed integrated strength–sustainability evaluation framework is useful for finding greener metakaolin composite concrete.

10.14311/1087 ◽  
2009 ◽  
Vol 49 (1) ◽  
Author(s):  
E. Klingsch ◽  
A. Frangi ◽  
M. Fontana

In recent years, the cement industry has been criticized for emitting large amounts of carbon dioxide; hence it is developing environment-friendly cement, e.g., blended, supersulfated slag cement (SSC). This paper presents an experimental analysis of the compressive strength development of concrete made from blended cement in comparison to ordinary cement at high temperature. Three different types of cement were used during these tests, an ordinary portland cement (CEM I), a portland limestone cement (CEM II-A-LL) and a new, supersulfated slag cement (SSC). The compressive strength development for a full thermal cycle, including cooling down phase, was investigated on concrete cylinders. It is shown that the SSC concrete specimens perform similar to ordinary cement specimens. 


2018 ◽  
Vol 162 ◽  
pp. 02022 ◽  
Author(s):  
Mohammed Abed ◽  
Mohammed Nasr ◽  
Zaid Hasan

This paper aims to investigate the influence of Silica fume proportion ratio in respect to the total amount of binder on compressive strength of reactive powder concrete cured in two curing systems. Four ratios of Silica fume (0%, 15%, 25% and 35%) as replacement of cement weight were considered. After de-molding, two curing systems were used: the first included immersing the cubic specimens in water at 24 ± 2°C until the test. In the second, the specimens were immersed in hot water at 105 ± 5°C (accelerated curing) for 48 hours, then in water at 24 ± 2°C until the test. The results show that mix which contains 25% Silica fume imparts more enhancement on compressive strength as compared to the control mix. Also, it was found that the second system of curing has more influence on compressive strength development than the first one, especially at earlier ages.


2016 ◽  
Vol 21 (1) ◽  
pp. 9-20
Author(s):  
Ersalina Tang

The purpose of this study is to analyze the impact of Foreign Direct Investment, Gross Domestic Product, Energy Consumption, Electric Consumption, and Meat Consumption on CO2 emissions of 41 countries in the world using panel data from 1999 to 2013. After analyzing 41 countries in the world data, furthermore 17 countries in Asia was analyzed with the same period. This study utilized quantitative approach with Ordinary Least Square (OLS) regression method. The results of 41 countries in the world data indicates that Foreign Direct Investment, Gross Domestic Product, Energy Consumption, and Meat Consumption significantlyaffect Environmental Qualities which measured by CO2 emissions. Whilst the results of 17 countries in Asia data implies that Foreign Direct Investment, Energy Consumption, and Electric Consumption significantlyaffect Environmental Qualities. However, Gross Domestic Product and Meat Consumption does not affect Environmental Qualities.


2021 ◽  
Vol 13 (6) ◽  
pp. 3039
Author(s):  
Tomiwa Sunday Adebayo ◽  
Sema Yılmaz Genç ◽  
Rui Alexandre Castanho ◽  
Dervis Kirikkaleli

Environmental sustainability is an important issue for current scholars and policymakers in the East Asian and Pacific region. The causal and long-run effects of technological innovation, public–private partnership investment in energy, and renewable energy consumption on environmental sustainability in the East Asian and Pacific regions have not been comprehensively explored while taking into account the role of economic growth using quarterly data for the period 1992–2015. Therefore, the present study aims to close this literature gap using econometric approaches, namely Bayer–Hanck cointegration, autoregressive distributed lag (ARDL), dynamic ordinary least square (DOLS), and fully modified ordinary least square (FMOLS) tests. Furthermore, the study utilizes the frequency domain causality test to capture the causal impact of public–private partnership investment in energy, renewable energy consumption, technological innovation, and economic growth on CO2 emissions. The advantage of the frequency domain causality test is that it can capture the causality between short-term, medium-term, and long-term variables. The outcomes of the ARDL, FMOLS and DOLS show that renewable energy consumption and technological innovation mitigate CO2 emissions, while public–private partnership investment in energy and economic growth increase CO2 emissions. Moreover, the frequency causality test outcomes reveal that technological innovation, public–private partnership investment in energy, and renewable energy consumption cause CO2 emissions, particularly in the long-term. Thus, as a policy recommendation, the present study recommends promoting renewable energy consumption by focusing more on technological innovation in the East Asia and Pacific regions.


2021 ◽  
Vol 13 (12) ◽  
pp. 6749
Author(s):  
Shuyang Chen

In the literature, very few studies have focused on how urbanisation will influence the policy effects of a climate policy even though urbanisation does have profound socioeconomic impacts. This paper has explored the interrelations among the urbanisation, carbon emissions, GDP, and energy consumption in China using the autoregressive distributed lag (ARDL) model. Then, the unit urbanisation impacts are inputted into the policy evaluation framework of the Computable General Equilibrium (CGE) model in 2015–2030. The results show that the urbanisation had a positive impact on the GDP but a negative impact on the carbon emissions in 1980–2014. These impacts were statistically significant, but its impact on the energy consumption was not statistically significant. In 2015–2030, the urbanisation will have negative impacts on the carbon emissions and intensity. It will decrease the GDP and the household welfare under the carbon tax. The urbanisation will increase the average social cost of carbon (ASCC). Hence, the urbanisation will reinforce the policy effects of the carbon tax on the emissions and welfare.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3165
Author(s):  
Eva Litavcová ◽  
Jana Chovancová

The aim of this study is to examine the empirical cointegration, long-run and short-run dynamics and causal relationships between carbon emissions, energy consumption and economic growth in 14 Danube region countries over the period of 1990–2019. The autoregressive distributed lag (ARDL) bounds testing methodology was applied for each of the examined variables as a dependent variable. Limited by the length of the time series, we excluded two countries from the analysis and obtained valid results for the others for 26 of 36 ARDL models. The ARDL bounds reliably confirmed long-run cointegration between carbon emissions, energy consumption and economic growth in Austria, Czechia, Slovakia, and Slovenia. Economic growth and energy consumption have a significant impact on carbon emissions in the long-run in all of these four countries; in the short-run, the impact of economic growth is significant in Austria. Likewise, when examining cointegration between energy consumption, carbon emissions, and economic growth in the short-run, a significant contribution of CO2 emissions on energy consumptions for seven countries was found as a result of nine valid models. The results contribute to the information base essential for making responsible and informed decisions by policymakers and other stakeholders in individual countries. Moreover, they can serve as a platform for mutual cooperation and cohesion among countries in this region.


Sign in / Sign up

Export Citation Format

Share Document