scholarly journals Magnetic Field-Based Vehicle Positioning System in Long Tunnel Environment

2021 ◽  
Vol 11 (24) ◽  
pp. 11641
Author(s):  
Beomju Shin ◽  
Jung-Ho Lee ◽  
Changsu Yu ◽  
Hankyeol Kyung ◽  
Taikjin Lee

Recently, long tunnels are becoming more prevalent in Korea, and exits are added at certain sections of the tunnels. Thus, a navigation system should correctly guide the user toward the exit; however, adequate guidance is not delivered because the global navigation satellite system (GNSS) signal is not received inside a tunnel. Therefore, we present an accurate position estimation system using a magnetic field for vehicles passing through a tunnel. The position can be accurately estimated using the magnetic sensor of a smartphone with an appropriate attitude estimation and magnetic sensor calibration. Position estimation was realized by attaching the smartphone on the dashboard during navigation and calibrating the sensors using position information from the GNSS and magnetic field database before entering the tunnel. This study used magnetic field sequence data to estimate vehicle positions inside a tunnel. Furthermore, subsequence dynamic time warping was applied to compare the magnetic field data stored in the buffer with the magnetic field database, and the feasibility and performance of the proposed system was reviewed through an experiment in an actual tunnel. The analysis of the position estimation results confirmed that the proposed system could appropriately deliver tunnel navigation.

2014 ◽  
Vol 487 ◽  
pp. 606-610
Author(s):  
Hui Lue Jiang ◽  
Bo Liu ◽  
Chuan Dao Liu ◽  
Jun Li Liu

Magnetic sensor with direction memory can be used to control the motion direction. Based on Biot-Savart theory, the magnetic field distribution expression of a bar-type in external space is derived, and the superposition distribution of both inner and outer magnet is directed by the principle of superposition, which can be used to quantitatively describe the magnetic distribution formed by inner and outer magnet, and accurately scope the effective field. According to the operating characteristics of the magnetic reed switch with different value of pull-in and drop-out, by a proper detecting distance to ensure the magnetic field strength value of inner magnet at magnetic reed switch greater than pull-in value and less than drop-out value to make magnetic reed switch maintaining the original state when outer magnet leaving. Meanwhile, by a proper detecting distance to ensure the superinposed magnetic field strength value greater than pull-in value in the forward direction, and less than drop-out value in backward direction. Calculation of response curves show the impacts of magnet size, response intensity and detecting distance variation on the sensor.


2013 ◽  
Vol 401-403 ◽  
pp. 1393-1396
Author(s):  
Xu Dong Guo ◽  
Chao Ruan ◽  
Bin Ge ◽  
Rong Guo Yan ◽  
Ying Liu

To track a capsule endoscope, a novel measuring method based on alternating magnetic field is presented. The signal-to-noise ratio of the magnetic sensor decreases sharply with the increasing tracking distance. Thus, a magnetic generator with automatic gain regulation is designed to improve the localization precision. It is composed of a microcontroller, a DA converter, a timer, a waveform synthesis circuit, a power amplifier, a sequence control circuit and excitation coils. First, the wireless magnetic sensor measures the strength of the magnetic field produced by the magnetic generator. Via radio frequency communication, the measured result is feedback to the comparator of the microcontroller. According to a deviation obtained by comparing the measured results with the reference value, the microcontroller outputs a digital signal to the DA converter to control the magnitude of the exciting current. The prototype of the system was developed and the experiment was performed. The experiment shows that the magnetic field generator can automatically adjust the strength of the exciting signal.


2011 ◽  
Vol 383-390 ◽  
pp. 5082-5087
Author(s):  
Ding Li ◽  
Song Lin Wo ◽  
Xiong Zhu Bu

In allusion to the compensation of environmental magnetic field for using three-axis magnetic sensor, a twelve-position calibrating method without north is designed. The equations of three-axis bias, scale factor error and install alignment error are deduced in the proposed method which is totally based on the magnetic field of up direction. According to the effect of hard iron and soft iron is equaled to the variation of three-axis bias, scale factor error and install alignment error, comparison experiments are completed in natural conditions and in conditions that the effect of hard iron and soft iron is artificially imposed. The experiment shows that this method can solve the compensation of hard iron and soft iron interference effectively for the application of up direction tumbling test.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5707
Author(s):  
Ching-Han Chen ◽  
Pi-Wei Chen ◽  
Pi-Jhong Chen ◽  
Tzung-Hsin Liu

By collecting the magnetic field information of each spatial point, we can build a magnetic field fingerprint map. When the user is positioning, the magnetic field measured by the sensor is matched with the magnetic field fingerprint map to identify the user’s location. However, since the magnetic field is easily affected by external magnetic fields and magnetic storms, which can lead to “local temporal-spatial variation”, it is difficult to construct a stable and accurate magnetic field fingerprint map for indoor positioning. This research proposes a new magnetic indoor positioning method, which combines a magnetic sensor array composed of three magnetic sensors and a recurrent probabilistic neural network (RPNN) to realize a high-precision indoor positioning system. The magnetic sensor array can detect subtle magnetic anomalies and spatial variations to improve the stability and accuracy of magnetic field fingerprint maps, and the RPNN model is built for recognizing magnetic field fingerprint. We implement an embedded magnetic sensor array positioning system, which is evaluated in an experimental environment. Our method can reduce the noise caused by the spatial-temporal variation of the magnetic field, thus greatly improving the indoor positioning accuracy, reaching an average positioning accuracy of 0.78 m.


2016 ◽  
Vol 34 (11) ◽  
pp. 985-998 ◽  
Author(s):  
Galina Korotova ◽  
David Sibeck ◽  
Mark Engebretson ◽  
John Wygant ◽  
Scott Thaller ◽  
...  

Abstract. We use magnetic field and plasma observations from the Van Allen Probes, Time History of Events and Macroscale Interactions during Substorms (THEMIS) and Geostationary Operational Environmental Satellite system (GOES) spacecraft to study the spatial and temporal characteristics of long-lasting poloidal Pc4 pulsations in the dayside magnetosphere. The pulsations were observed after the main phase of a moderate storm during low geomagnetic activity. The pulsations occurred during various interplanetary conditions and the solar wind parameters do not seem to control the occurrence of the pulsations. The most striking feature of the Pc4 magnetic field pulsations was their occurrence at similar locations during three of four successive orbits. We used this information to study the latitudinal nodal structure of the pulsations and demonstrated that the latitudinal extent of the magnetic field pulsations did not exceed 2 Earth radii (RE). A phase shift between the azimuthal and radial components of the electric and magnetic fields was observed from ZSM  =  0.30 RE to ZSM  =  −0.16 RE. We used magnetic and electric field data from Van Allen Probes to determine the structure of ULF waves. We showed that the Pc4 magnetic field pulsations were radially polarized and are the second-mode harmonic waves. We suggest that the spacecraft were near a magnetic field null during the second orbit when they failed to observe the magnetic field pulsations at the local times where pulsations were observed on previous and successive orbits. We investigated the spectral structure of the Pc4 pulsations. Each spacecraft observed a decrease of the dominant period as it moved to a smaller L shell (stronger magnetic field strength). We demonstrated that higher frequencies occurred at times and locations where Alfvén velocities were greater, i.e., on Orbit 1. There is some evidence that the periods of the pulsations increased during the plasmasphere refilling following the storm.


2021 ◽  
Author(s):  
Jeanne Mercier de Lépinay ◽  
Tristan Fréville ◽  
Baptiste Kiemes ◽  
Luis Miguel Sanabria ◽  
Bruno Gavazzi ◽  
...  

<p>Magnetic mapping is commonly used in the academic and industrial sectors for a wide variety of objectives. To comply with a broad range of survey designs, the use of unmanned aerial vehicles (UAVs) has become frequent over the recent years. The majority of existing systems involves a magnetic acquisition equipment and its carrier (an UAV in this context) with no -or very few- connections between the two systems. Terremys is conceiving and optimizing UAVs specifically adapted for geophysical magnetic acquisitions together with the appropriate processing tools, and performs magnetic surveying in challenging environments. Terremys’ “Q6” system weights 2.5 kg in air, including UAV & instrumentation, and allows 30 min swarm or individual flights.</p><p>Rotary-wing UAVs are found to be the most adaptive systems for a wide range of contexts and constraints (extensive range of flights heights even with steep slopes). They offer more flight flexibility than fixed-wing aircrafts. One of the major problems in the use of rotary-wings UAVs for magnetic mapping is the magnetic field generated by the aircraft itself on the measurements. Towing the magnetic sensor 2 to 5 m under the aircraft reduces data positioning accuracy and decreases the performances of the UAV, which can be critical for high-resolution surveys. To overcome these problems, a deployable 1 m long boom is rigidly attached to the UAV. The UAV magnetic signal can be divided between 1-the magnetic field of the whole equipment and 2-a low to high frequency magnetic field mostly originating from the motors. The magnetization of the system is the principal source of magnetic noise. It is modelled and corrected by calibration-compensation processes permitted by the use of three-component fluxgate magnetometers. The time-varying noise depends on the motors rotational speed and is minimized by optimizing the UAV components and characteristics along with the boom’s length.</p><p>The final set-up is able to acquire magnetic data with a precision of 1 to 5 nT at any height from 1 to 150 m above ground level. The high-precision magnetic measurements are coupled with a centimetric RTK navigation system to allow for high-resolution surveying. The quality of the obtained data is similar to that obtained with ground or aerial surveys with conventional carriers and matches industrial standards. Moreover, Terremys’ systems merge in real-time data from all the aircraft instruments in order to integrate magnetic measurements, positioning information and all the UAV’s flight data (full telemetry) into a unique synchronized data file. This opens up many possibilities in terms of QA/QC, data processing and facilitates on-field workflows.</p><p>Case studies with diverse designs, flight altitudes and targets are presented to investigate the acquisition performances for different applications, as distinct as network positioning, archaeological prospecting or geological mapping.</p><p>The full integration of the magnetic sensor to the drone opens the possibility for implementation additional sensors to the system. The adjoining of other magnetic sensors would allow multi-sensors surveying and increases daily productivity. Diverse geophysical sensors can also be added, such as thermal/infrared cameras, spectrometers, radar/SAR.</p>


2017 ◽  
Vol 71 (3) ◽  
pp. 649-663 ◽  
Author(s):  
Jing Xiao ◽  
Xiusheng Duan ◽  
Xiaohui Qi

In this paper, a novel method is proposed to generate the matching sequence of an ICCP algorithm for aircraft geomagnetic-aided navigation based on the M coding principle. The length of the matching sequence and the selection of the matching points directly affects the performance of the Iterated Closest Contour Point (ICCP) algorithm. This study proposes an adaptive geomagnetic matching method, ΔM-ICCP, to solve the problem of selecting suitable matching lengths, and matching points, when a vehicle is moving in a highly dynamic environment. First, the △M coding principle is adopted to select the matching points based on the information of the magnetic field, the resolution of the magnetic map, and the accuracy of the magnetic sensor. Then, the problem of selecting parameters for the △M-ICCP algorithm is turned into an optimisation problem, which can be solved by a Binary Particle Swarm Optimisation (BPSO) algorithm. Finally, the algorithm is verified through simulation experiments. The proposed algorithm can provide a basis to determine the matching length of the △M-ICCP algorithm and adaptively adjust the algorithm's parameters according to different trajectories. The algorithm is applicable even in the areas where the fluctuations of Earth's magnetic field are not significant.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Dongfeng He

We developed a high-sensitivity magnetoimpedance magnetic field sensor using a FeCoSiB amorphous wire and a coil wound around it. The amorphous wire had the diameter of 0.1 mm and the length of 5 mm. The magnetic field resolution of about 20 pT/√Hz was achieved. But the dynamic range of the magnetoimpedance magnetic field sensor was only about ±0.7 Gauss, which was not enough for some applications, such as the defect evaluation of steel plate. The linearity of the system was also not good when big magnetic field was applied, which will cause some noise when the system is used in unshielded environment. We developed a feedback method to improve the dynamic range and the linearity of the magnetic field sensor. The operation point of the magnetic field sensor was fixed by sending a feedback current to the coil. Using the feedback method, the dynamic range was improved from ±0.7 Gauss to ±10 Gauss and the linearity was also improved over 100 times better. An eddy current testing system using the magnetic sensor was developed, and the crack defects in steel plate and in 3D-printed titanium alloy plate were evaluated.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6137
Author(s):  
Max Jwo Lem Lee ◽  
Li-Ta Hsu ◽  
Hoi-Fung Ng

Accurate smartphone-based outdoor localization systems in deep urban canyons are increasingly needed for various IoT applications. As smart cities have developed, building information modeling (BIM) has become widely available. This article, for the first time, presents a semantic Visual Positioning System (VPS) for accurate and robust position estimation in urban canyons where the global navigation satellite system (GNSS) tends to fail. In the offline stage, a material segmented BIM is used to generate segmented images. In the online stage, an image is taken with a smartphone camera that provides textual information about the surrounding environment. The approach utilizes computer vision algorithms to segment between the different types of material class identified in the smartphone image. A semantic VPS method is then used to match the segmented generated images with the segmented smartphone image. Each generated image contains position information in terms of latitude, longitude, altitude, yaw, pitch, and roll. The candidate with the maximum likelihood is regarded as the precise position of the user. The positioning result achieved an accuracy of 2.0 m among high-rise buildings on a street, 5.5 m in a dense foliage environment, and 15.7 m in an alleyway. This represents an improvement in positioning of 45% compared to the current state-of-the-art method. The estimation of yaw achieved accuracy of 2.3°, an eight-fold improvement compared to the smartphone IMU.


Sign in / Sign up

Export Citation Format

Share Document