scholarly journals Comparative Analysis of Surface Pressure Fluctuations of High-Speed Train Running in Open-Field and Tunnel Using LES and Wavenumber-Frequency Analysis

2021 ◽  
Vol 11 (24) ◽  
pp. 11702
Author(s):  
Songjune Lee ◽  
Cheolung Cheong ◽  
Byunghee Kim ◽  
Jaehwan Kim

The interior noise of a high-speed train due to the external flow disturbance is more than ever a major problem for product developers to consider during a design state. Since the external surface pressure field induces wall panel vibration of a high-speed train, which in turn generates the interior sound, the first step for low interior noise design is to characterize the surface pressure fluctuations due to external disturbance. In this study, the external flow field of a high-speed train cruising at a speed of 300 km/h in open-field and tunnel are numerically investigated using high-resolution compressible LES (large eddy simulation) techniques, with a focus on characterizing fluctuating surface pressure field according to surrounding conditions of the cruising train, i.e., open-field and tunnel. First, compressible LES schemes with high-resolution grids were employed to accurately predict the exterior flow and acoustic fields around a high-speed train simultaneously. Then, the predicted fluctuating pressure field on the wall panel surface of a train was decomposed into incompressible and compressible ones using the wavenumber-frequency transform, given that the incompressible pressure wave induced by the turbulent eddies within the boundary layer is transported approximately at the mean flow and the compressible pressure wave propagated at the vector sum of the sound speed and the mean flow velocity. Lastly, the power levels due to each pressure field were computed and compared between open-field and tunnel. It was found that there is no significant difference in the power levels of incompressible surface pressure fluctuations between the two cases. However, the decomposed compressible one in the tunnel case is higher by about 2~10 dB than in the open-field case. This result reveals that the increased interior sound of the high-speed train running in a tunnel is due to the compressible surface pressure field.

2019 ◽  
Vol 9 (22) ◽  
pp. 4924
Author(s):  
Lee ◽  
Cheong ◽  
Kim ◽  
Kim

The high-speed train interior noise induced by the exterior flow field is one of the critical issues for product developers to consider during design. The reliable numerical prediction of noise in a passenger cabin due to exterior flow requires the decomposition of surface pressure fluctuations into the hydrodynamic (incompressible) and the acoustic (compressible) components, as well as the accurate computation of the near aeroacoustic field, since the transmission characteristics of incompressible and compressible pressure waves through the wall panel of the cabin are quite different from each other. In this paper, a systematic numerical methodology is presented to obtain separate incompressible and compressible surface pressure fields in the wavenumber–frequency and space–time domains. First, large eddy simulation techniques were employed to predict the exterior flow field, including a highly-resolved acoustic near-field, around a high-speed train running at the speed of 300 km/h in an open field. Pressure fluctuations on the train surface were then decomposed into incompressible and compressible fluctuations using the wavenumber–frequency analysis. Finally, the separated incompressible and compressible surface pressure fields were obtained from the inverse Fourier transform of the wavenumber–frequency spectrum. The current method was illustratively applied to the high-speed train HEMU-430X running at a speed of 300 km/h in an open field. The results showed that the separate incompressible and compressible surface pressure fields in the time–space domain could be obtained together with the associated aerodynamic source mechanism. The power levels due to each pressure field were also estimated, and these can be directly used for interior noise prediction.


Author(s):  
Stephen J. Wilkins ◽  
Joseph W. Hall

The unsteady flow field produced by a tandem cylinder system with the upstream cylinder yawed to the mean flow direction is investigated for upstream cylinder yaw angles from α = 60° to α = 90°. Multi-point fluctuating surface pressure and hotwire measurements were conducted at various spanwise positions on both the upstream and downstream cylinders. The results indicate that yawing the front cylinder to the mean flow direction causes the pressure and velocity spectra on the upstream and downstream cylinders to become more broadband than for a regular tandem cylinder system, and reduces the magnitude of the peak associated with the vortex-shedding. However, span-wise correlation and coherence measurements indicate that the vortex-shedding is still present and was being obscured by the enhanced three-dimensionality that the upstream yawed cylinder caused and was still present and correlated from front to back, at least for the larger yaw angles investigated. When the cylinder was yawed to α = 60°, the pressure fluctuations became extremely broadband and exhibited shorter spanwise correlation.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Stephen J. Wilkins ◽  
Joseph W. Hall

The unsteady flow field produced by a tandem cylinder system with the upstream cylinder yawed to the mean flow direction is investigated for upstream cylinder yaw angles from α=60 deg to α=90 deg. Multipoint fluctuating surface pressure and hot-wire measurements were conducted at various spanwise positions on both the upstream and downstream cylinders. The results indicate that yawing the front cylinder to the mean flow direction causes the pressure and velocity spectra on the upstream and downstream cylinders to become more broadband than for a regular tandem cylinder system, and reduces the magnitude of the peak associated with the vortex-shedding. However, spanwise correlation and coherence measurements indicate that the vortex-shedding is still present and was being obscured by the enhanced three-dimensionality that the upstream yawed cylinder caused. When the cylinder was yawed to α=60 deg, the pressure fluctuations became extremely broadband and exhibited shorter spanwise correlation.


Fluids ◽  
2019 ◽  
Vol 4 (3) ◽  
pp. 162 ◽  
Author(s):  
Thorben Helmers ◽  
Philip Kemper ◽  
Jorg Thöming ◽  
Ulrich Mießner

Microscopic multiphase flows have gained broad interest due to their capability to transfer processes into new operational windows and achieving significant process intensification. However, the hydrodynamic behavior of Taylor droplets is not yet entirely understood. In this work, we introduce a model to determine the excess velocity of Taylor droplets in square microchannels. This velocity difference between the droplet and the total superficial velocity of the flow has a direct influence on the droplet residence time and is linked to the pressure drop. Since the droplet does not occupy the entire channel cross-section, it enables the continuous phase to bypass the droplet through the corners. A consideration of the continuity equation generally relates the excess velocity to the mean flow velocity. We base the quantification of the bypass flow on a correlation for the droplet cap deformation from its static shape. The cap deformation reveals the forces of the flowing liquids exerted onto the interface and allows estimating the local driving pressure gradient for the bypass flow. The characterizing parameters are identified as the bypass length, the wall film thickness, the viscosity ratio between both phases and the C a number. The proposed model is adapted with a stochastic, metaheuristic optimization approach based on genetic algorithms. In addition, our model was successfully verified with high-speed camera measurements and published empirical data.


2004 ◽  
Vol 128 (2) ◽  
pp. 261-272 ◽  
Author(s):  
Carmen E. Kachel ◽  
John D. Denton

This paper presents the results of a numerical and experimental investigation of the unsteady pressure field in a three-stage model of a high pressure steam turbine. Unsteady surface pressure measurements were taken on a first and second stage stator blade, respectively. The measurements in the blade passage were supplemented by time resolved measurements between the blade rows. The explanation of the origin of the unsteady pressure fluctuations was supported by unsteady three-dimensional computational fluid dynamic calculations of which the most extensive calculation was performed over two stages. The mechanisms affecting the unsteady pressure field were: the potential field frozen to the upstream blade row, the pressure waves originating from changes in the potential pressure field, the convected unsteady velocity field, and the passage vortex of the upstream blade row. One-dimensional pressure waves and the unsteady variation of the pitchwise pressure gradient due to the changing velocity field were the dominant mechanisms influencing the magnitude of the surface pressure fluctuations. The magnitude of these effects had not been previously anticipated to be more important than other recognized effects.


2000 ◽  
Vol 415 ◽  
pp. 175-202 ◽  
Author(s):  
Y. P. GUO ◽  
M. C. JOSHI ◽  
P. H. BENT ◽  
K. J. YAMAMOTO

This paper discusses unsteady surface pressures on aircraft flaps and their correlation with far-field noise. Analyses are made of data from a 4.7% DC-10 aircraft model test, conducted in the 40 × 80 feet wind tunnel at NASA Ames Research Center. Results for various slat/wing/flap configurations and various flow conditions are discussed in detail to reveal major trends in surface pressure fluctuations. Spectral analysis, including cross-correlation/coherence, both among unsteady surface pressures and between far-field noise and near-field fluctuations, is used to reveal the most coherent motions in the near field and identify potential sources of noise related to flap flows. Dependencies of surface pressure fluctuations on mean flow Mach numbers, flap settings and slat angles are discussed. Dominant flow features in flap side edge regions, such as the formation of double-vortex structures, are shown to manifest themselves in the unsteady surface pressures as a series of spectral humps. The spectral humps are shown to correlate well with the radiated noise, indicating the existence of major noise sources in flap side edge regions. Strouhal number scaling is used to collapse the data with satisfactory results. The effects of flap side edge fences on surface pressures are also discussed. It is shown that the application of fences effectively increases the thickness of the flaps so that the double-vortex structures have more time to evolve. As a result, the characteristic timescale of the unsteady sources increases, which in turn leads to a decrease in the dominant frequency of the source process. Based on this, an explanation is proposed for the noise reduction mechanism of flap side edge fences.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1201
Author(s):  
Jidong Kang ◽  
Liting Shi ◽  
Jie Liang ◽  
Babak Shalchi-Amirkhiz ◽  
Colin Scott

We studied the Portevin-Le Chatelier effect and fracture behavior of a FeMnC TWIP steel using high speed digital image correlation by varying the specimen geometry (flat vs. round) and test strain rate (0.001 vs. 0.1 s−1). The results show that the mean flow stress, the mean strain hardening rate and the mean strain rate sensitivity parameters are all independent of the specimen geometry and are uncorrelated with the presence or not of Portevin-Le Chatelier (PLC) bands, the type of PLC bands observed or the critical strain for band formation. However, both the fracture strains and stresses and the PLC behavior are highly geometry and/or strain rate dependent. Dynamic strain aging (DSA) and in particular the presence of PLC instabilities appears to play an important but as yet unclear role in promoting premature necking and final fracture.


Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 32
Author(s):  
Xiumei Liu ◽  
Jie He ◽  
Yongwei Xie ◽  
Beibei Li ◽  
Yujia Zhang ◽  
...  

A multi-field synchronous measurement system for the cavitation flow in a regulating valve was established. The system combines a high-speed full-flow field display system with a pressure measurement system to realize the simultaneous acquisition of cavitation shapes and pressure pulsations. Cavitation flow occurs near the throttle orifice, which is obviously a quasi-periodic behavior. The unsteady cavitation flow mainly includes three stages: the growth of the attached cavity, the fracture and shedding of the attached cavity and the growth and collapse of the free cavity. The time evolution of the cavitation behaviors is highly related with excited pressure fluctuations. With the increasing attached cavity area, the corresponding pressure in the flow field decreases slowly. When the attached cavity falls off and develops downstream, the cavity area decreases gradually, and the pressure increases gradually. When the free cavity shrinks and collapses, the pressure in the flow field reaches the peak value. The pressure pulsation and the change of cavity area have the same dominant frequency, around 2000 Hz, at the monitoring point in the upstream, throat and expansion monitoring points. Furthermore, with increasing inlet pressure, the mean and variance values of cavitation area become larger, and the excited pressure fluctuation at each measuring point becomes more intense. The mean value of pulsating pressure at the throat gradually increases, while the pressure in the expansion section presents a downward trend. The variance of pressure pulsation and the maximum pressure also increase gradually with the increase in inlet pressure. The change of cavitation area and the pressure pulsation in the regulating valve complement each other. The results in this paper could provide experimental guidance on optimizing the structure of the valve, inhibiting cavitation occurrence and prolonging the service life of the valve.


Sign in / Sign up

Export Citation Format

Share Document