scholarly journals Analytical Prediction of Balling, Lack-of-Fusion and Keyholing Thresholds in Powder Bed Fusion

2021 ◽  
Vol 11 (24) ◽  
pp. 12053
Author(s):  
Wenjia Wang ◽  
Jinqiang Ning ◽  
Steven Y. Liang

This paper proposes analytical modeling methods for the prediction of balling, lack-of-fusion and keyholing thresholds in the laser powder bed fusion (LPBF) additive manufacturing. The molten pool dimensions were first predicted by a closed-form analytical thermal model. The effects of laser power input, boundary heat loss, powder size distribution and powder packing pattern were considered in the calculation process. The predicted molten pool dimensions were then employed in the calculation of analytical thresholds for these defects. Reported experimental data with different materials were compared to predictions to validate the presented analytical models. The predicted thresholds of these defects under various process conditions have good agreement with the experimental results. The computation time for the presented models is less than 5 min on a personal computer. The optimized process window for Ti6Al4V was obtained based on the analytical predictions of these defects. The sensitivity analyses of the value of threshold to the laser power and scanning speed were also conducted. The proposed analytical methods show higher computational efficiency than finite element methods, without including any iteration-based computations. The acceptable predictive accuracy and low computational time will make the proposed analytical strategy be a good tool for the optimization of process conditions for the fabrication of defects-free complex products in laser powder bed fusion.

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 11
Author(s):  
Wenjia Wang ◽  
Hamid Garmestani ◽  
Steven Y. Liang

In this study, a physics-based analytical method was proposed for the prediction of upper surface roughness in laser powder bed fusion (LPBF). The temperature distribution and molten pool shape in the melting process were first predicted by an analytical thermal model. The cap area of the solidified molten pool was assumed to be half-elliptical. Based on this assumption and the principle of mass conservation, the cap height and the specific profile of the cap area were obtained. The transverse overlapping pattern of adjacent molten pools of upper layer was then obtained, with given hatch space. The analytical expression of the top surface profile was obtained after putting this overlapping pattern into a 2D coordinate system. The expression of surface roughness was then derived as an explicit function of the process parameters and material properties, based on the definition of surface roughness (Ra) in the sense of an arithmetic average. The predictions of surface roughness were then compared with experimental measurements of 316L stainless steel for validation and show acceptable agreement. In addition, the proposed model does not rely on numerical iterations, which ensures its low computational cost. Thus, the proposed analytical method can help understand the causes for roughness in LPBF and guide the optimization of process conditions to fabricate products with good quality. The sensitivity of surface roughness to process conditions was also investigated in this study.


Author(s):  
Farhad Imani ◽  
Aniruddha Gaikwad ◽  
Mohammad Montazeri ◽  
Prahalada Rao ◽  
Hui Yang ◽  
...  

The goal of this work is to understand the effect of process conditions on lack of fusion porosity in parts made using laser powder bed fusion (LPBF) additive manufacturing (AM) process, and subsequently, to detect the onset of process conditions that lead to lack of fusion-related porosity from in-process sensor data. In pursuit of this goal, the objectives of this work are twofold: (1) quantify the count (number), size and location of pores as a function of three LPBF process parameters, namely, the hatch spacing (H), laser velocity (V), and laser power (P); and (2) monitor and identify process conditions that are liable to cause porosity through analysis of in-process layer-by-layer optical images of the build invoking multifractal and spectral graph theoretic features. These objectives are important because porosity has a significant impact on the functional integrity of LPBF parts, such as fatigue life. Furthermore, linking process conditions to defects via sensor signatures is the first step toward in-process quality assurance in LPBF. To achieve the first objective, titanium alloy (Ti–6Al–4V) test cylinders of 10 mm diameter × 25 mm height were built under differing H, V, and P settings on a commercial LPBF machine (EOS M280). The effect of these process parameters on count, size, and location of pores was quantified based on X-ray computed tomography (XCT) images. To achieve the second objective, layerwise optical images of the powder bed were acquired as the parts were being built. Spectral graph theoretic and multifractal features were extracted from the layer-by-layer images for each test part. Subsequently, these features were linked to the process parameters using machine learning approaches. Through these image-based features, process conditions under which the parts were built were identified with the statistical fidelity over 80% (F-score).


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1568
Author(s):  
Wenjia Wang ◽  
Steven Y. Liang

This work proposed a computationally efficient analytical modeling strategy to calculate the product porosity in laser powder bed fusion (LPBF) induced by a lack-of-fusion defect, with the consideration of cap area in solidified molten pools, influence of powder bed characteristics on material properties, and un-melted powders in the lack-of-fusion portion. The powder packing pattern and powder bed void fraction were estimated by an advancing front method and the technique of image analysis. The effects of powder bed characteristics on the material properties were considered by analytical models with solid properties and powder bed void fraction as inputs. A physics-based thermal model was utilized to calculate the temperature distribution and molten pool size. The molten pool cross section in transvers direction was assumed to be dual half-elliptical. Based on this assumption and molten pool size, the geometry of the molten pool cross section with cap area was determined. The overlapping pattern of molten pools in adjacent scan tracks and layers was then obtained with given hatch space and layer thickness. The lack-of-fusion area fraction was obtained through image analysis of the overlapping pattern. The lack-of-fusion porosity was the multiplication of the lack-of-fusion area fraction and powder bed void fraction. The predictions of porosity under different process conditions were compared with experimental results of 316L stainless steel and showed a better predictive accuracy than the predictions that did not consider cap area. The proposed analytical modeling method has no numerical calculations, which ensures its low computational cost. Thus, the proposed model can be a convenient tool for the fast computation of lack-of-fusion-induced porosity and can help the quality control in LPBF.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Bing Zhang ◽  
Raiyan Seede ◽  
Austin Whitt ◽  
David Shoukr ◽  
Xueqin Huang ◽  
...  

Purpose There is recent emphasis on designing new materials and alloys specifically for metal additive manufacturing (AM) processes, in contrast to AM of existing alloys that were developed for other traditional manufacturing methods involving considerably different physics. Process optimization to determine processing recipes for newly developed materials is expensive and time-consuming. The purpose of the current work is to use a systematic printability assessment framework developed by the co-authors to determine windows of processing parameters to print defect-free parts from a binary nickel-niobium alloy (NiNb5) using laser powder bed fusion (LPBF) metal AM. Design/methodology/approach The printability assessment framework integrates analytical thermal modeling, uncertainty quantification and experimental characterization to determine processing windows for NiNb5 in an accelerated fashion. Test coupons and mechanical test samples were fabricated on a ProX 200 commercial LPBF system. A series of density, microstructure and mechanical property characterization was conducted to validate the proposed framework. Findings Near fully-dense parts with more than 99% density were successfully printed using the proposed framework. Furthermore, the mechanical properties of as-printed parts showed low variability, good tensile strength of up to 662 MPa and tensile ductility 51% higher than what has been reported in the literature. Originality/value Although many literature studies investigate process optimization for metal AM, there is a lack of a systematic printability assessment framework to determine manufacturing process parameters for newly designed AM materials in an accelerated fashion. Moreover, the majority of existing process optimization approaches involve either time- and cost-intensive experimental campaigns or require the use of proprietary computational materials codes. Through the use of a readily accessible analytical thermal model coupled with statistical calibration and uncertainty quantification techniques, the proposed framework achieves both efficiency and accessibility to the user. Furthermore, this study demonstrates that following this framework results in printed parts with low degrees of variability in their mechanical properties.


Author(s):  
J. C. Heigel ◽  
B. M. Lane

This work presents high speed thermographic measurements of the melt pool length during single track laser scans on nickel alloy 625 substrates. Scans are made using a commercial laser powder bed fusion machine while measurements of the radiation from the surface are made using a high speed (1800 frames per second) infrared camera. The melt pool length measurement is based on the detection of the liquidus-solidus transition that is evident in the temperature profile. Seven different combinations of programmed laser power (49 W to 195 W) and scan speed (200 mm/s to 800 mm/s) are investigated and numerous replications using a variety of scan lengths (4 mm to 12 mm) are performed. Results show that the melt pool length reaches steady state within 2 mm of the start of each scan. Melt pool length increases with laser power, but its relationship with scan speed is less obvious because there is no significant difference between cases performed at the highest laser power of 195 W. Although keyholing appears to affect the anticipated trends in melt pool length, further research is required.


2019 ◽  
Vol 164 ◽  
pp. 107534 ◽  
Author(s):  
Hahn Choo ◽  
Kin-Ling Sham ◽  
John Bohling ◽  
Austin Ngo ◽  
Xianghui Xiao ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 3927
Author(s):  
Eo Ryeong Lee ◽  
Se Eun Shin ◽  
Naoki Takata ◽  
Makoto Kobashi ◽  
Masaki Kato

This study provides a novel approach to fabricating Al/C composites using laser powder bed fusion (LPBF) for a wide range of structural applications utilizing Al-matrix composites in additive manufacturing. We investigated the effects of LPBF on the fabrication of aluminum/multiwalled carbon nanotube (Al/MWCNT) composites under 25 different conditions, using varying laser power levels and scan speeds. The microstructures and mechanical properties of the specimens, such as elastic modulus and nanohardness, were analyzed, and trends were identified. We observed favorable sintering behavior under laser conditions with low energy density, which verified the suitability of Al/MWCNT composites for a fabrication process using LPBF. The size and number of pores increased in specimens produced under high energy density conditions, suggesting that they are more influenced by laser power than scan speed. Similarly, the elastic modulus of a specimen was also more affected by laser power than scan speed. In contrast, scan speed had a greater influence on the final nanohardness. Depending on the laser power used, we observed a difference in the crystallographic orientation of the specimens by a laser power during LPBF. When energy density is high, texture development of all samples tended to be more pronounced.


Sign in / Sign up

Export Citation Format

Share Document