scholarly journals Improving the Energy Efficiency of an Existing Building by Dynamic Numerical Simulation

2021 ◽  
Vol 11 (24) ◽  
pp. 12150
Author(s):  
Lelia Letitia Popescu ◽  
Razvan Stefan Popescu ◽  
Tiberiu Catalina

Nowadays, the enhancement of the existing building stock energy performance is a priority. To promote building energy renovation, the European Committee asks Member States to define retrofit strategies, finding cost-effective solutions. This research aims to investigate the relationship between the initial characteristics of an existing residential buildings and different types of retrofit solutions in terms of final/primary energy consumption and CO2 emissions. A multi-objective optimization has been carried out using experimental data in DesignBuilder dynamic simulation tool.

2019 ◽  
Vol 111 ◽  
pp. 03011
Author(s):  
Jana Bartošová Kmeťková ◽  
Dušan Petráš

The main objective of the research is to make evaluation of energy and economic by the retrofitting of the residential buildings. If this methodology can be an appropriate tool to guide decisions related with the building energy performances and to identify the most cost-effective variants of the renovation, that could be applied to the building stock in Slovakia by the analysis of the life-cycle costs of the representative apartment buildings. The specific objectives of this study were the following: • Theoretical analysis of the residential buildings stock in Slovakia • Analysis of the studied residential buildings and their energy parameters before and after renovation • Simulation of the energy performance of the apartment buildings • Mathematical modeling of the technical and economic parameters


2021 ◽  
Vol 13 (2) ◽  
pp. 603
Author(s):  
Darija Gajić ◽  
Slobodan Peulić ◽  
Tim Mavrič ◽  
Anna Sandak ◽  
Črtomir Tavzes ◽  
...  

Sustainable approaches for retrofitting buildings for energy efficiency are becoming necessary in a time when the building sector is the largest energy consumer. Retrofitting building stock is effective for reducing global energy consumption and decreasing resource exploitation. Less developed EU member states and neighboring developing countries show reluctance towards healthy and renewable materials. Implementation of sustainable materials for energy retrofitting is slowed down due to gaps in legislation and effective strategic programs, availability of bio-based materials, lack of knowledge regarding use and maintenance of renewable products, and marketing lobbies. Use of bio-based materials in refurbishment is important due to their negative or low global warming potential (GWP), low primary energy (PEI) need for production, cost-effective benefits, and recycling/reuse potential. Role of environmentally friendly solutions and low-carbon economy growth is particularly relevant in developing countries, such as Bosnia-Herzegovina, that cannot afford innovative energy recovery systems, yet possess a significant amount of poorly managed building stock. This research aims to analyze frameworks regarding retrofitting of residential buildings in Bosnia-Herzegovina and Slovenia. The analysis tackles indirect causes, studies the legal background, and examines strategic frameworks; thus, it indicates potential barriers for implementation of recommended retrofitting solutions based on renewable materials.


2021 ◽  
Vol 13 (11) ◽  
pp. 6018
Author(s):  
Theo Lynn ◽  
Pierangelo Rosati ◽  
Antonia Egli ◽  
Stelios Krinidis ◽  
Komninos Angelakoglou ◽  
...  

The building stock accounts for a significant portion of worldwide energy consumption and greenhouse gas emissions. While the majority of the existing building stock has poor energy performance, deep renovation efforts are stymied by a wide range of human, technological, organisational and external environment factors across the value chain. A key challenge is integrating appropriate human resources, materials, fabrication, information and automation systems and knowledge management in a proper manner to achieve the required outcomes and meet the relevant regulatory standards, while satisfying a wide range of stakeholders with differing, often conflicting, motivations. RINNO is a Horizon 2020 project that aims to deliver a set of processes that, when working together, provide a system, repository, marketplace and enabling workflow process for managing deep renovation projects from inception to implementation. This paper presents a roadmap for an open renovation platform for managing and delivering deep renovation projects for residential buildings based on seven design principles. We illustrate a preliminary stepwise framework for applying the platform across the full-lifecycle of a deep renovation project. Based on this work, RINNO will develop a new open renovation software platform that will be implemented and evaluated at four pilot sites with varying construction, regulatory, market and climate contexts.


Proceedings ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 1 ◽  
Author(s):  
Michele Vavallo ◽  
Marco Arnesano ◽  
Gian Marco Revel ◽  
Asier Mediavilla ◽  
Ane Ferreiro Sistiaga ◽  
...  

Buildings are the key factor to transform cities and to contribute to recent European energy efficiency objectives for 2030 and long-term 2050. New buildings account to only 1–2% annually. Yet, ninety percent of the existing building stock in Europe was built before 1990, it is therefore necessary to promote their energy renovation to achieve the set objectives. Renovation solutions are available on the market, yet a wrong implementation and integration due to a lack of knowledge neither maximizes the energy performance of the post-retrofitting nor the financial optimisation and viability of the projects. This paper presents research on a plug & play, modular, easy installable façade and ICT decision making technologies to provide affordable solutions in order to overcome those deep renovation barriers. The paper sets out by defining a value framework that can be applied by real estate investors for making better retrofitting decisions for residential buildings, through mapping targeted building typologies and investigating new building revalorisation strategies, new renovation concepts and KPIs for evaluation. Thereafter the paper presents the modular and easy-to-install façade system that is replicable and scalable at European level.


2021 ◽  
Vol 2042 (1) ◽  
pp. 012001
Author(s):  
Hui Ben ◽  
Erik Mackie ◽  
Ian Parry ◽  
Emily Shuckburgh ◽  
George Hawker ◽  
...  

Abstract Upgrading the energy performance of the UK’s entire building stock is the central pillar of any credible and cost-effective strategy to meeting net zero. This research aims to open up the revenue of using thermal infrared data from satellites to assist in processes on building energy performance improvement. High-resolution thermal infrared data output from space offers the potential for fast and effective monitoring provision that can cover large areas and targeted buildings or sites. We have interviewed a set of stakeholders from government, industry and community groups to build the specific use cases and find out detailed user requirements.


2021 ◽  
Vol 312 ◽  
pp. 06003
Author(s):  
Franz Bianco Mauthe Degerfeld ◽  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Vincenzo Corrado

The EN ISO 52016-1 standard presents a new simplified dynamic calculation procedure, whose aim is to provide an accurate energy performance assessment without excessively increasing the number of data required. The Italian National Annex to EN ISO 52016-1, currently under development, provides some improvements to the hourly calculation method; despite many works can be found in literature on the hourly model of EN ISO 52016-1, the National Annexes application has not been sufficiently analysed yet. The aim of the present work is to assess the main improvements introduced by the Italian National Annex and to compare the main results, in terms of energy need for space heating and cooling. To this purpose, an existing building representative of the Italian office building stock in Northern Italy was selected as a case study. The energy simulations were carried out considering both continuous and reduced operation of the HVAC systems. The options specified in the Italian National Annex were firstly applied one by one, and then all together. The variation of the energy need compared to the international base procedure is finally quantified. For the premises and the scope above discussed, the present work is intended to enhance the standardisation activity towards the adoption of more accurate and trustable calculation methods of the building energy performance.


2020 ◽  
Vol 12 (2) ◽  
pp. 642 ◽  
Author(s):  
Marta Maria Sesana ◽  
Mathieu Rivallain ◽  
Graziano Salvalai

According to its strategic long-term vision, Europe wants to be a climate-neutral economy by 2050. Buildings play a crucial role in this vision, and they represent a sector with low-cost opportunities for high-level CO2 reduction. The challenge the renovation of the existing building stock, which must be increased to 3%/year, more than double compared to the current 1.2%/year. In this context, the ALliance for Deep RENovation (ALDREN) project has the goal of encouraging property owners to undertake renovation of existing buildings using a clear, robust, and comparable method. This paper aims to present the ALDREN approach and the ALDREN Building Renovation Passport (BRP), giving an overview of the connections and data links to other existing databases and certification schemes. To understand the data value potential of buildings, one requires reliable and trustworthy information. The Building Renovation Passport, introduced by the recent Energy Performance Building Directive (EPBD) recast 844/2018/EU, aims to provide this information. This paper presents the experience of the ALDREN BRP for non-residential buildings as well as the development procedure for its data model and the potential that this tool could have for the construction market. The ALDREN BRP has been structured into two main parts—BuildLog and RenoMap—with a common language that facilitates communication on the one hand and, on the other, the setting of renovation targets based on lifetime, operation, and user needs.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sidney Newton ◽  
Arezoo Shirazi ◽  
Pernille Christensen

PurposeTo achieve the building and property by 2050, decarbonisation goals will now require a significant increase in the rate of improvement in the energy performance of buildings. Occupant behaviour is crucial. This study seeks to guide the application of smart building technology in existing building stock to support improved building energy performance and occupant comfort.Design/methodology/approachThis study follows a logical partitioning approach to the development of a schema for building energy performance and occupant comfort. A review of the literature is presented to identify the characteristics that label and structure the problem elements. A smart building technology framework is overlaid on the schema. The framework is then applied to configure and demonstrate an actual technology implementation for existing building stock.FindingsThe developed schema represents the key components and relationships of building energy performance when combined with occupant comfort. This schema provides a basis for the definition of a smart building technologies framework for existing building stock. The study demonstrates a viable configuration of available smart building technologies that couple building energy performance with occupant comfort in the existing building stock. Technical limitations (such as relatively simple building management control regimes) and pragmatic limitations (such as change management issues) are noted for consideration.Originality/valueThis is the first development of a schema to represent how building energy performance can be coupled with occupant comfort in existing building stock using smart building technologies. The demonstration study applies one of many possible technology configurations currently available, and promotes the use of open source applications with push-pull functionality. The schema provides a common basis and guide for future studies.


2017 ◽  
Vol 5 (1) ◽  
pp. 13 ◽  
Author(s):  
Gjergji Simaku

The expertise on building stock typology used openly available data from the Albanian statistical office. As the CENSUS was not especially designed for gathering data for the energetic evaluation of the building stock, some data were not available on the required level of detail. Estimations were necessary to extrapolate data to the existing stock. Technically, the study selected and described twenty representative categories of residential buildings typology for Albania. Were identified the level and the structure of final energy consumption at present and in the future by building age category, building type, climate zone, and energy end-use. Using an original template excel data sheet, were conducted the calculations of their thermal energy performance in three climate zones, designed standardized retrofit packages, calculated possible energy savings, and investment required by building type. The engineering principle of the Regulation in force, regarding to the legislative act of Energy Building Code in Albania, is beyond any doubt correct and carefully studied. The act is a rule book or the Regulation (energy building code - here The Code) which contains information that is sufficient to perform calculations of the different insulating layers for new construction after the year 2003. Also, the Regulation’s algorithms are still relevant in terms of calculation to provide Energy for heating demands in Albania. After 12 years, the Code remains the same and could provide either an optimal potential energy savings to the existing buildings, or an optimal cost-effective of building’s insulation without imposing a burden of high financial housing builders to multifamily prospective buyers. Based today Europe’s developments on Energy Performance of Buildings, the study is found relevant to provide a methodology for calculation of the energy performance in buildings (kWh/ m2a) based on volumetric coefficient heat losses (Gvt) for heating only, the existing indicator of the existing Code. The following study deals with the possibility of transposing the methodology used to the Code into an energy Performance based on minimum requirement for a new Regulation and/or EP Calculation Methodology based on efficient use of energy for heating and cooling purposes.


2019 ◽  
Vol 111 ◽  
pp. 06027
Author(s):  
Francesco Causone ◽  
Martina Pelle

The urbanization process is constantly increasing worldwide. Today over 50 % of the population resides in urban areas and this value is expected to grow up to 68 % by 2050. In this scenario, the development of district scale energy grids and management systems has become crucial to optimize energy use and to balance energy flows within the cities, encouraging the use of renewable sources and self-consumption. This study focusses on a district under development in the city of Milan, involving an urban area of about 920 000 m2, which, once completed, will count for about 4 500 apartments, a school and a few other commercial uses. The existing energy systems consist of an electric grid, including a small photovoltaic field, a district heating system and a local district cooling system exploiting groundwater via heat pumps. They serve, at present, seven residential tower buildings (400 apartments). The overarching aim of the research is to evolve the existing grid into a smart energy grid able to guarantee an intelligent management of the district, empowering eventually people to apply for demand-response schemes, electric mobility and other innovative services. In order to perform such an improvement and extension of the exiting grid, it is necessary to evaluate and simulate the profiles and dynamics of the final energy uses for the residential buildings, that will represent the major load on site. Since monitoring data are not yet available for the district, the evaluation of the energy performance of the existing buildings has been developed through dynamic energy simulations via the definition of profile loads of the most frequent apartment typologies, that allow, moreover, to simulate further developments in the districts. Besides, a monitoring plan for the existing systems has been developed and implemented. Monitoring data will be used at first for validating the developed load profiles; then, they will be analysed to develop optimisation algorithms for the management of the upgraded energy grid. In this paper, the case study is presented and the results of the analysis, via energy simulation, on the existing building stock are reported.


Sign in / Sign up

Export Citation Format

Share Document