Defining and demonstrating a smart technology configuration to improve energy performance and occupant comfort in existing buildings: a conceptual framework

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sidney Newton ◽  
Arezoo Shirazi ◽  
Pernille Christensen

PurposeTo achieve the building and property by 2050, decarbonisation goals will now require a significant increase in the rate of improvement in the energy performance of buildings. Occupant behaviour is crucial. This study seeks to guide the application of smart building technology in existing building stock to support improved building energy performance and occupant comfort.Design/methodology/approachThis study follows a logical partitioning approach to the development of a schema for building energy performance and occupant comfort. A review of the literature is presented to identify the characteristics that label and structure the problem elements. A smart building technology framework is overlaid on the schema. The framework is then applied to configure and demonstrate an actual technology implementation for existing building stock.FindingsThe developed schema represents the key components and relationships of building energy performance when combined with occupant comfort. This schema provides a basis for the definition of a smart building technologies framework for existing building stock. The study demonstrates a viable configuration of available smart building technologies that couple building energy performance with occupant comfort in the existing building stock. Technical limitations (such as relatively simple building management control regimes) and pragmatic limitations (such as change management issues) are noted for consideration.Originality/valueThis is the first development of a schema to represent how building energy performance can be coupled with occupant comfort in existing building stock using smart building technologies. The demonstration study applies one of many possible technology configurations currently available, and promotes the use of open source applications with push-pull functionality. The schema provides a common basis and guide for future studies.

2021 ◽  
Vol 312 ◽  
pp. 06003
Author(s):  
Franz Bianco Mauthe Degerfeld ◽  
Ilaria Ballarini ◽  
Giovanna De Luca ◽  
Vincenzo Corrado

The EN ISO 52016-1 standard presents a new simplified dynamic calculation procedure, whose aim is to provide an accurate energy performance assessment without excessively increasing the number of data required. The Italian National Annex to EN ISO 52016-1, currently under development, provides some improvements to the hourly calculation method; despite many works can be found in literature on the hourly model of EN ISO 52016-1, the National Annexes application has not been sufficiently analysed yet. The aim of the present work is to assess the main improvements introduced by the Italian National Annex and to compare the main results, in terms of energy need for space heating and cooling. To this purpose, an existing building representative of the Italian office building stock in Northern Italy was selected as a case study. The energy simulations were carried out considering both continuous and reduced operation of the HVAC systems. The options specified in the Italian National Annex were firstly applied one by one, and then all together. The variation of the energy need compared to the international base procedure is finally quantified. For the premises and the scope above discussed, the present work is intended to enhance the standardisation activity towards the adoption of more accurate and trustable calculation methods of the building energy performance.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Seyed Sajad Rezaei Nasab ◽  
Abbasali Tayefi Nasrabadi ◽  
Somayeh Asadi ◽  
Seiyed Ali Haj Seiyed Taghia

PurposeDue to technological improvement and development of the vehicle-to-home (V2H) concept, electric vehicle (EV) can be considered as an active component of net-zero energy buildings (NZEBs). However, to achieve more dependable results, proper energy analysis is needed to take into consideration the stochastic behavior of renewable energy, energy consumption in the building and vehicle use pattern. This study aims to stochastically model a building integrating photovoltaic panels as a microgeneration technology and EVs to meet NZEB requirements.Design/methodology/approachFirst, a multiobjective nondominated sorting genetic algorithm (NSGA-II) was developed to optimize the building energy performance considering panels installed on the façade. Next, a dynamic solution is implemented in MATLAB to stochastically model electricity generation using solar panels as well as building and EV energy consumption. Besides, the Monte Carlo simulation method is used for quantifying the uncertainty of NZEB performance. To investigate the impact of weather on both energy consumption and generation, the model is tested in five different climatic zones in Iran.FindingsThe results show that the stochastic simulation provides building designers with a variety of convenient options to select the best design based on level of confidence and desired budget. Furthermore, economic evaluation signifies that investing in all studied cities is profitable.Originality/valueConsidering the uncertainty in building energy demand and PV power generation as well as EV mobility and the charging–discharging power profile for evaluating building energy performance is the main contribution of this study.


2017 ◽  
Vol 35 (1) ◽  
pp. 16-40 ◽  
Author(s):  
Sheikh Zuhaib ◽  
Richard Manton ◽  
Magdalena Hajdukiewicz ◽  
Marcus M. Keane ◽  
Jamie Goggins

Purpose There is profound demand for higher skills and expertise in retrofitting the existing building stock of Europe. The delivery of low- or nearly zero-energy retrofits is highly dependent on technical expertise, adoption of new materials, methods of construction and innovative technologies. Future Irish national building regulations will adopt the Energy Performance of Buildings Directive vision of retrofitting existing buildings to higher energy efficiency standards. Construction industry stakeholders are key for the achievement of energy performance targets. Specifically, the purpose of this paper is to assess the attitudes, approaches and experiences of Irish construction professionals regarding energy efficient buildings, particularly nearly zero-energy buildings (nZEBs). Design/methodology/approach Data were collected through a series of quantitative and qualitative methods, including a survey, a workshop and detailed interviews with professionals in the retrofit industry. The structure of this approach was informed by preliminary data and information available on the Irish construction sector. Findings There is a substantial amount of ambiguity and reluctance among the professionals in reaching the Irish nZEB targets. The growing retrofit industry demonstrates low-quality auditing and pre/post-retrofit analysis. Basic services and depth of retrofits are compromised by project budgets and marginal profits. Unaligned value supply chain, poor interaction among nZEB professionals and fragmented services are deterrents to industry standardisation. Practical implications This study will enable construction industry stakeholders to make provisions for overcoming the barriers, gaps and challenges identified in the practices of the retrofit projects. It will also inform the formulation of policies that drive retrofit uptake. Social implications This study has implications for understanding the social barriers existing in retrofit projects. Support from clients/owners has a diverse impact on energy performance and retrofit decisions. Community-based initiatives are key to unlock the promotion of nZEBs. Originality/value This paper provides an overview of current activities of retrofit professionals and analyses the barriers, gaps and challenges in the industry.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3455
Author(s):  
Aleksandar S. Anđelković ◽  
Miroslav Kljajić ◽  
Dušan Macura ◽  
Vladimir Munćan ◽  
Igor Mujan ◽  
...  

A building energy performance gap can be illustrated as the difference between the theoretical (methodologically defined) and the actual energy consumption. In EU countries, Energy Performance Certificates are issued when buildings are constructed, sold, or leased. This information is the first step in order to evaluate the energy performance of the building stock. In Serbia, when issuing an energy certificate, the adopted national methodology recognizes only energy consumption for heating. The main purpose of this paper is to evaluate the energy gap and estimate the relevance of an Energy Performance Certificate to meet the national energy efficiency or carbon target. An Energy Performance Certificate determines the theoretical residential and commercial building energy efficiency or its “design intent”. This research stresses the necessity of measuring and achieving reductions in actual energy consumption through system regulation and consumers’ self-awareness in buildings. The research compares the performance of the building stock (135) that is connected to the District Heating System (DHS), with its own integrated heat meter, to Individual Gas Boiler (IGB) systems (18), in the city of Novi Sad, Serbia, built after 2014. For the purpose of comparing energy consumption, 16 buildings were selected that are very similar in terms of design, operation, and location. The data used are derived from metered consumption data, official evidence of city service companies, and Energy Performance Certificates of the considered buildings. We have determined that IGB systems have a much wider specific annual performance gap (11.19–101 kWh/m2a) than the buildings in the DHS (3.16–18.58 kWh/m2a).


2021 ◽  
Vol 11 (24) ◽  
pp. 12150
Author(s):  
Lelia Letitia Popescu ◽  
Razvan Stefan Popescu ◽  
Tiberiu Catalina

Nowadays, the enhancement of the existing building stock energy performance is a priority. To promote building energy renovation, the European Committee asks Member States to define retrofit strategies, finding cost-effective solutions. This research aims to investigate the relationship between the initial characteristics of an existing residential buildings and different types of retrofit solutions in terms of final/primary energy consumption and CO2 emissions. A multi-objective optimization has been carried out using experimental data in DesignBuilder dynamic simulation tool.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 37
Author(s):  
Mamak P.Tootkaboni ◽  
Ilaria Ballarini ◽  
Michele Zinzi ◽  
Vincenzo Corrado

The building energy performance pattern is predicted to be shifted in the future due to climate change. To analyze this phenomenon, there is an urgent need for reliable and robust future weather datasets. Several ways for estimating future climate projection and creating weather files exist. This paper attempts to comparatively analyze three tools for generating future weather datasets based on statistical downscaling (WeatherShift, Meteonorm, and CCWorldWeatherGen) with one based on dynamical downscaling (a future-typical meteorological year, created using a high-quality reginal climate model). Four weather datasets for the city of Rome are generated and applied to the energy simulation of a mono family house and an apartment block as representative building types of Italian residential building stock. The results show that morphed weather files have a relatively similar operation in predicting the future comfort and energy performance of the buildings. In addition, discrepancy between them and the dynamical downscaled weather file is revealed. The analysis shows that this comes not only from using different approaches for creating future weather datasets but also by the building type. Therefore, for finding climate resilient solutions for buildings, care should be taken in using different methods for developing future weather datasets, and regional and localized analysis becomes vital.


Sign in / Sign up

Export Citation Format

Share Document