scholarly journals Integrated Design of Hybrid Interstory-Interbuilding Multi-Actuation Schemes for Vibration Control of Adjacent Buildings under Seismic Excitations

2017 ◽  
Vol 7 (4) ◽  
pp. 323 ◽  
Author(s):  
Francisco Palacios-Quiñonero ◽  
Josep Rubió-Massegú ◽  
Josep Rossell ◽  
Hamid Karimi
2016 ◽  
Vol 744 ◽  
pp. 012163 ◽  
Author(s):  
Francisco Palacios-Quiñonero ◽  
Josep Rubió-Massegú ◽  
Josep M Rossell ◽  
Hamid Reza Karimi

2012 ◽  
Vol 44 (12) ◽  
pp. 1491-1509 ◽  
Author(s):  
Kasra Bigdeli ◽  
Warren Hare ◽  
Solomon Tesfamariam

2021 ◽  
Vol 2070 (1) ◽  
pp. 012010
Author(s):  
S M Khatami ◽  
H Naderpour ◽  
A Mortezaei ◽  
S T. Tafreshi ◽  
A Jakubczyk-Gałczyńska ◽  
...  

Abstract The aim of the present paper is to verify the effectiveness of the artificial neural network (ANN) in predicting the peak lateral displacement of multi-story building during earthquakes, based on the peak ground acceleration (PGA) and building parameters. For the purpose of the study, the lumped-mass multi-degree-of-freedom structural model and different earthquake records have been considered. Firstly, values of stories mass and stories stiffness have been selected and building vibration period has been automatically calculated. The ANN algorithm has been used to determine the limitation of the peak lateral displacement of the multi-story building with different properties (height of stories, number of stories, mass of stories, stiffness of stories and building vibration period) exposed to earthquakes with various PGA. Then, the investigation has been focused on critical distance between two adjacent buildings so as to prevent their pounding during earthquakes. The proposed ANN has logically predicted the limitation of the peak lateral displacement for the five-story building with different properties. The results of the study clearly indicate that the algorithm is also capable to properly predict the peak lateral dis-placements for two buildings so as to prevent their pounding under different earthquakes. Subsequently, calculation of critical distance can also be optimized to save the land and provide the safety space between two adjacent buildings prone to seismic excitations.


2020 ◽  
Vol 10 (10) ◽  
pp. 3591
Author(s):  
Seyed Mohammad Khatami ◽  
Hosein Naderpour ◽  
Seyed Mohammad Nazem Razavi ◽  
Rui Carneiro Barros ◽  
Barbara Sołtysik ◽  
...  

Earthquake-induced structural pounding may cause major damages to structures, and therefore it should be prevented. This study is focused on using an artificial neural network (ANN) method to determine the sufficient seismic gap in order to avoid collisions between two adjacent buildings during seismic excitations. Six lumped mass models of structures with a different number of stories (from one to six) have been considered in the study. The earthquake characteristics and the parameters of buildings have been defined as inputs in the ANN analysis. The required seismic gap preventing pounding has been firstly determined for specified structural arrangements and earthquake records. In order to validate the method for other structural parameters, the study has been further extended for buildings with different values of height, mass, and stiffness of each story. Finally, the parametric analysis has been conducted for various earthquakes scaled to different values of the peak ground acceleration (PGA). The results of the verification and validation analyses indicate that the determined seismic gaps are large enough to prevent structural collisions, and they are just appropriate for all different structural arrangements, seismic excitations, and structural parameters. The results of the parametric analysis show that the increase in the PGA of earthquake records leads to a substantial, nearly uniform, increase in the required seismic gap between structures. The above conclusions clearly indicate that the ANN method can be successfully used to determine the minimal distance between two adjacent buildings preventing their collisions during different seismic excitations.


2011 ◽  
Vol 11 (06) ◽  
pp. 1139-1161 ◽  
Author(s):  
M. F. HUANG ◽  
K. T. TSE ◽  
C. M. CHAN ◽  
W. J. LOU

Structural optimization and vibration control have long been recognized as effective approaches to obtain the optimal structural design and to mitigate excessive responses of tall building structures. However, the combined effects of both techniques in the structural design of wind-sensitive tall buildings with excessive responses have not been revealed. Therefore, this paper develops an integrated design technique making use of both the advantages of structural optimization and vibration control with an empirical cost model of the control devices. While the structural optimization is based on a very efficient optimality criteria (OC) method, a smart tuned mass damper (STMD) is used for the structural control purposes. Utilizing data obtained from synchronous pressure measurements in the wind tunnel, a 60-story building of mixed steel and concrete construction with three-dimensional (3D) mode shapes was employed as an illustrative example to demonstrate the effectiveness of the proposed optimal performance-based design framework integrating with structural vibration control.


2013 ◽  
Vol 353-356 ◽  
pp. 2181-2186
Author(s):  
Yu Wei Dai ◽  
Chao Liu ◽  
Wen Feng Li ◽  
Li Tian

The tuned mass damper (TMD) for vibration control of tower subjected to multi-dimensional seismic excitations is studied in this paper. Calculation model of the tuned mass damper is introduced, and the equations of motion of a tower with tuned mass damper are derived, and the calculation parameters of the tuned mass damper are given based on the control structure. According to a practical engineering, the three-dimensional finite element model of a tower is established using SAP2000. Three typical seismic records are selected according the code of seismic design. Vibration control for tower model with tuned mass damper under multi-dimensional seismic excitations is performed by using numerical simulation. The maximum responses of displacement and axial force of the tower structure without and with TMD are obtained. The results show that the TMD could decrease the responses of the tower in three directions, and the tower with TMD can be a reference for tower practice engineering application.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiaofang Kang ◽  
Peipei Zhang ◽  
Yiwei Zhang ◽  
Dawei Man ◽  
Qinghu Xu ◽  
...  

A decentralized control scheme can effectively solve the control problem of civil engineering structure vibration under earthquake. This paper takes a research into the decentralized control scheme of adjacent buildings when the earthquake happens. It combines overlapping decentralized control method and linear matrix inequality (LMI) with H ∞ control algorithm and puts forward the overlapping decentralized H ∞ control method. A simplified dynamical model of structural vibration control has been established considering the topology structural features of adjacent buildings. The H ∞ control algorithm is applied into each dynamically different subsystems and can be also served as the decentralized H ∞ controllers. Therefore, by contracting decentralized H ∞ controllers to original state space, overlapping decentralized H ∞ controllers are obtained. In this manner, the adjacent buildings’ structure model is analyzed in terms of simulation and calculation which provides a comprehensive insight into vibration control. The results show that the centralized control, the decentralized control, and the overlapping decentralized control, based on linear matrix inequality, can be nearly effective in cases above satisfactorily. Besides, it can also reduce the computational cost as well as increase the flexibility of controller design.


Sign in / Sign up

Export Citation Format

Share Document