scholarly journals Automated Defect Recognition as a Critical Element of a Three Dimensional X-ray Computed Tomography Imaging-Based Smart Non-Destructive Testing Technique in Additive Manufacturing of Near Net-Shape Parts

2017 ◽  
Vol 7 (11) ◽  
pp. 1156 ◽  
Author(s):  
Istvan Szabo ◽  
Jiangtao Sun ◽  
Guojin Feng ◽  
Jamil Kanfoud ◽  
Tat-Hean Gan ◽  
...  
2016 ◽  
Vol 16 (4) ◽  
pp. 3583-3586 ◽  
Author(s):  
Jigang Wang ◽  
Shengcai Hao ◽  
Wenhua Zhou ◽  
Xiaokun Qi ◽  
Jilong Shi

Optical Non-Destructive Testing (ONDT) can be applied as penetrating elemental and structure analysis technology in the pigments identification field. Three-dimensional video microscopy, Raman microscopy and energy dispersive X-ray fluorescence spectroscopy are employed to measure the materials based on a Qing Dynasty meticulous painting. The results revealed that the dark yellow area within the decorative patterns was presented due to the interaction of Emerald green and hematite, and the bright yellow edge area was delineated by Cu–Zn–Pb composition. The interesting thing is that an artificial synthetic ultramarine blue was checked in the painting. According to the first synthesized time of ultramarine blue and Paris green, the time limit of the painting completion can be identified. The principle of Pigment subtractive colorant and nitikaset method were employed to interpreting the results. Optical testing combined with the area of cultural relic identification can be a potential method to build an expert identification system successfully. This work also help lay the optical method groundwork for further cultural relic identification, sterilization, and preservation.


2000 ◽  
Author(s):  
Ryszard Pyrz

Abstract Among modern measuring techniques, which are designed to reconstruct and to measure three-dimensional aspects of microstructure on mesoscopic scale lengths, the X-ray microtomography seems to be very well suited to yield this information. Generally, X-ray microtomography is the X-ray based non-destructive testing method that was first developed for medical purposes and only recently applied to materials characterization. Monitoring materials’ microstructure using X-ray microtomography allows reconstructing a three-dimensional image of the specimen from non-destructive, serial sections and processing it in order to visualize and measure three-dimensional features. Thus valuable information can be deduced from the correlation of measured stress and strain values with a number of internal geometrical parameters which cannot be measured at the specimen surface.


2018 ◽  
Vol 769 ◽  
pp. 256-261
Author(s):  
Bright Kwame Afornu ◽  
Odii Christopher Joseph ◽  
Ali Ozdiev ◽  
Dmitriy A. Sednev

The invention of computed tomography some few decades ago, coupled with its applications in the field of non-destructive testing for industrial objects inspection has revolutionized the way inspections were formerly done. Despite the conventional data acquisition scheme which is integrated with a rotational stage in between the source and the detector works perfectly for small and lighter objects, hence, it seems impossible to investigate complicated, bulky objects with interconnected unbalanced composites. Moreover, it will be very expensive to harnessed technologies into the rotational stage which can be incorporated into this conventional technique with an optimum degree of accuracy. Therefore, this paper will consider the translational data acquisition scheme which is proven mathematically as an alternative method to the conventional technique [1]. This translational scheme takes into account the variations and the magnification of both the source x-ray and the detector around the object and then proceeded by scans from different focal distances. Python packages with necessary plugins were used in implementing the reconstructive algorithm generated in simulating and modelling a suitable image of inspected object.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4629 ◽  
Author(s):  
Wronkowicz-Katunin ◽  
Katunin ◽  
Dragan

The occurrence of barely visible impact damage (BVID) in aircraft composite components and structures being in operation is a serious problem, which threatens structural safety of an aircraft, and should be timely detected and, if necessary, repaired according to the obligatory regulations of currently applied maintenance methodologies. Due to difficulties with a proper detection of such a type of damage even with non-destructive testing (NDT) methods as well as manual evaluation of the testing results, supporting algorithms for post-processing of these results seem to be of a high interest for aircraft maintenance community. In the following study, the authors proposed new approaches for BVID reconstruction based on results of ultrasonic and X-ray computed tomographic testing using authored advanced image processing algorithms. The studies were performed on real composite structures taking into consideration failure mechanisms occurring during impact damaging. The developed algorithms allow extracting relevant diagnostic information both from ultrasonic B-and C-Scans as well as from tomographic 3D arrays used for the validation of ultrasonic reconstructed damage locations, which allows for a significant improvement of the detectability of BVID in tested structures. The developed approach can be especially useful for NDT operators evaluating the results of structural NDT inspections.


Sign in / Sign up

Export Citation Format

Share Document