scholarly journals Mono- and Bi-Molecular Adsorption of SF6 Decomposition Products on Pt Doped Graphene: A First-Principles Investigation

2018 ◽  
Vol 8 (10) ◽  
pp. 2010 ◽  
Author(s):  
Yongqian Wu ◽  
Shaojian Song ◽  
Dachang Chen ◽  
Xiaoxing Zhang

Based on the first-principles of density functional theory, the SF6 decomposition products including single molecule (SO2F2, SOF2, SO2), double homogenous molecules (2SO2F2, 2SOF2, 2SO2) and double hetero molecules (SO2 and SOF2, SO2 and SO2F2, SOF2 and SO2F2) adsorbed on Pt doped graphene were discussed. The adsorption parameters, electron transfer, electronic properties and energy gap was investigated. The adsorption of SO2, SOF2 and SO2F2 on the surface of Pt-doped graphene was a strong chemisorption process. The intensity of chemical interactions between the molecule and the Pt-graphene for the above three molecules was SO2F2 > SOF2 > SO2. The change of energy gap was also studied and according to the value of energy gap, the conductivity of Pt-graphene before and after adsorbing different gas molecules can be evaluated.

2017 ◽  
Vol 890 ◽  
pp. 117-120
Author(s):  
Seba Sara Varghese ◽  
Sundaram Swaminathan ◽  
Krishna Kumar Singh ◽  
Vikas Mittal

The adsorption of molecular oxygen on gallium doped graphene sheet is investigated using first-principles density functional theory calculations. The adsorption energy of O2 on gallium doped graphene is calculated after determining the energetically favourable adsorption configuration. The change in the electronic properties of gallium doped graphene after O2 adsorption is also determined to understand the nature their interactions. The results show that gallium doped graphene has large adsorption energy and small binding distance, which correspond to chemical adsorption. The calculated band structure and density of states plots of gallium doped graphene before and after adsorption show dramatic changes in the electronic properties due to the strong interactions of gallium doped graphene with adsorbed O2 molecule. These results indicate that gallium doped graphene is highly reactive to molecular oxygen and hence not a suitable choice for harmful gas detection in the presence of O2.


2016 ◽  
Vol 94 (10) ◽  
pp. 842-847 ◽  
Author(s):  
Fei Zhao ◽  
Yang Wang ◽  
Lihua Kang

Density functional theory (DFT) calculation was used to investigate the mechanism of Au3 clusters, separately supported on pure graphene (Au3/graphene) and one graphitic N-doped graphene (Au3/N-graphene). These supported Au3 clusters were used to catalyze acetylene hydrochlorination. Results show that the graphene supporter could obviously enhance the adsorption of reactants. Also, N-atom doping could broaden the energy gap between the HOMO of graphene and the LUMO of Au3, leading to the significantly attenuated interaction between the Au3 cluster and graphene by more than 19 kcal/mol (1 cal = 4.184 J). The two catalysts possessed extremely similar reaction mechanisms with activation energy values of 23.26 and 23.89 kcal/mol, respectively. The calculated activation barrier declined in the order of Au3 < Au3/N-graphene < Au3/graphene, suggesting that Au3/N-graphene could be a potential catalyst for acetylene hydrochlorination.


2019 ◽  
Vol 33 (04) ◽  
pp. 1950044 ◽  
Author(s):  
X. Jia ◽  
L. An

The first-principles method based on density functional theory has been used to investigate the adsorption performance of NO/NO2 molecules on intrinsic, Ag-doped, Pt-doped and Au-doped graphene. Results show that graphene doped with Ag/Pt/Au has shorter final adsorption distance, larger adsorption energy and charge transfer amount with NO/NO2 molecules than intrinsic graphene, and the charge densities of doped graphene and NO/NO2 molecules overlap effectively. Therefore, doping graphene with noble metals can greatly enhance the adsorption between graphene and NO/NO2 molecules. Analysis also reveals that Au-doped graphene has the strongest adsorption effect on NO/NO2 molecules, followed by Ag-doped graphene, while Pt-doped graphene has the weakest role on the adsorption of NO/NO2 molecules. The work conducted in this research provides a theoretical guidance for the application of NO/NO2 gas sensors based on graphene.


RSC Advances ◽  
2016 ◽  
Vol 6 (61) ◽  
pp. 55990-56003 ◽  
Author(s):  
Akhtar Hussain ◽  
Saif Ullah ◽  
M. Arshad Farhan

First-principles density functional theory (DFT) based calculations were carried out to investigate the structural and electronic properties of beryllium and nitrogen co-doped and BeN/BeO molecules-doped graphene systems.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 535-540
Author(s):  
PING BAI ◽  
CHEE CHING CHONG ◽  
ER PING LI ◽  
ZHIKUAN CHEN

A molecular diode based on a conjugated co-oligomer composed of p-type and n-type segments is investigated using the first principles method. The co-oligomer is connected to Au electrodes to form an Au –oligomer– Au system. The infinite system is dealt with a finite structure confined in a device region and effects from semi-infinite electrodes. Density functional theory and nonequilibrium Green's function are used to describe the device region self-consistently. The current–voltage (I–V) characteristics of the constructed system are calculated and a rectification behavior is observed. The energy gap and the spatial orientation of molecular orbitals, and the transmission functions are calculated to analyze the I–V characteristics of the molecular diode.


2010 ◽  
Vol 24 (32) ◽  
pp. 6277-6290 ◽  
Author(s):  
SULEYMAN CABUK

We investigate the energy band structure, total density of states, the linear, nonlinear optical (NLO) response, and the electron energy-loss spectrum for Li(Nb, Ta)O 3 using first principles calculations based on density functional theory in its local density approximation. Our calculation shows that these compounds have similar structures. The indirect band gaps of 3.39 eV (LiNbO3) and 3.84 eV (LiTaO3) at the Γ–Z direction in the Brillouin zone are found. A simple scissor approximation is applied to adjust the band energy gap from the calculations to match the experimental values. The optical spectra are analyzed and the origins of some of the peaks in the spectra are discussed in terms of calculated electronic structure. Calculations are reported for the frequency-dependent complex second-order NLO susceptibilities [Formula: see text] up to 10 eV and for zero-frequency limit [Formula: see text]. The results are compared with the theoretical calculations and the available experimental data.


2017 ◽  
Vol 31 (06) ◽  
pp. 1750036
Author(s):  
Yujie Bai ◽  
Qinfang Zhang ◽  
Fubao Zheng ◽  
Yun Yang ◽  
Qiangqiang Meng ◽  
...  

Codopant is an effective approach to modify the bandgap and band edge positions of transition metal oxide. Here, the electronic structures as well as the optical properties of pristine, mono-doped (N/P/Sb) and codoped (Sb, N/P) anatase TiO2 have been systematically investigated based on density functional theory calculations. It is found that mono-doped TiO2 exhibits either unoccupied or partially occupied intermediate state within the energy gap, which promotes the recombination of electron-hole pairs. However, the presence of (Sb, N/P) codopant not only effectively reduces the width of bandgap by introducing delocalized occupied intermediate states, but also adjusts the band edge alignment to enhance the hydrogen evolution activity of TiO2. Moreover, the optical absorption spectrum for (Sb, N/P) codoped TiO2, which is favored under oxygen-rich condition, demonstrates the improvement of its visible light absorption. These findings will promote the potential application of (Sb, N/P) codoped TiO2 photocatalysis for water splitting under visible light irradiation.


2020 ◽  
Author(s):  
Aqeel A. Hussein ◽  
Ahmed Al-Yasari ◽  
Yumiao Ma

A mechanistic insight into the hetero- and homodimerizations (HETD and HOMD) of styrenes promoted by hypervalent iodine reagents (HVIRs; DMP and PIDA) and facilitated by HFIP to yield all trans cyclobutanes is reported using density functional theory (DFT) calculations. The HFIP molecules lower the energy of the single electron oxidation (SEO) or initiation as a result of strong hydrogen bonding interactions that substantially stabilize the frontier orbitals before and after electron addition. The HETD or HOMD is a radically-characterized π-π stacked head-to-head stepwise [2+2] cycloaddition initiated via SEO by DMP or PIDA, respectively. DFT results supported by quasiclassical molecular dynamics simulations show that HOMD is a competing pathway to HETD although the latter is relatively faster, in accordance with experimental observations. The initiation is a rate-determining step as a thermodynamically endergonic and propagation is accomplished by radically-cationic hetero- and homodimerized intermediate as propagation is faster than single electron reduction (SER) or termination by radically-anionic HVIRs. Initiation by DMP found to be faster and less endergonic than by PIDA due to (1) the energy gap of electron transfer in a SEO step by I(V) is lower than I(III) and (2) the SOMO energy of the radical anion I(V) is lower than I(III). Furthermore, the presence of p-methoxy group is essential to underpin the SEO by which the more thermodynamically favorable SEO leads to a successful cycloaddition as the thermodynamic term represents a major contribution in the initiative barrier.


2020 ◽  
Author(s):  
Aqeel A. Hussein ◽  
Ahmed Al-Yasari ◽  
Yumiao Ma

A mechanistic insight into the hetero- and homodimerizations (HETD and HOMD) of styrenes promoted by hypervalent iodine reagents (HVIRs; DMP and PIDA) and facilitated by HFIP to yield all trans cyclobutanes is reported using density functional theory (DFT) calculations. The HFIP molecules lower the energy of the single electron oxidation (SEO) or initiation as a result of strong hydrogen bonding interactions that substantially stabilize the frontier orbitals before and after electron addition. The HETD or HOMD is a radically-characterized π-π stacked head-to-head stepwise [2+2] cycloaddition initiated via SEO by DMP or PIDA, respectively. DFT results supported by quasiclassical molecular dynamics simulations show that HOMD is a competing pathway to HETD although the latter is relatively faster, in accordance with experimental observations. The initiation is a rate-determining step as a thermodynamically endergonic and propagation is accomplished by radically-cationic hetero- and homodimerized intermediate as propagation is faster than single electron reduction (SER) or termination by radically-anionic HVIRs. Initiation by DMP found to be faster and less endergonic than by PIDA due to (1) the energy gap of electron transfer in a SEO step by I(V) is lower than I(III) and (2) the SOMO energy of the radical anion I(V) is lower than I(III). Furthermore, the presence of p-methoxy group is essential to underpin the SEO by which the more thermodynamically favorable SEO leads to a successful cycloaddition as the thermodynamic term represents a major contribution in the initiative barrier.


Sign in / Sign up

Export Citation Format

Share Document