scholarly journals Numerical Study of the Blood Flow in a Deformable Human Aorta

2019 ◽  
Vol 9 (6) ◽  
pp. 1216 ◽  
Author(s):  
Marwa Selmi ◽  
Hafedh Belmabrouk ◽  
Abdullah Bajahzar

In this work, we present a numerical investigation of blood flow in a portion of the human vascular system. More precisely, the present work analyzed the blood flow in the upper portion of the aorta. The aorta and its ramified blood vessels are surrounded by the cardiac muscle. The blood flow generates pressure on the internal surfaces of the artery and its ramifications, thereby causing deformation of the cardiac muscle. The numerical analysis used the Navier–Stokes equations as the governing equations of blood flow for the calculation of the velocity field and pressure distribution in the blood. The neo-Hookean hyperelastic model was used for the description of the behavior of the vessel walls. The velocity and pressure distributions were analyzed. The deformation of the vessel was also investigated. The numerical results could be used to better understand and predict the factors that trigger cardiovascular diseases and distortions of the aorta and as a diagnostic tool in clinical applications.

2015 ◽  
Vol 772 ◽  
pp. 552-555 ◽  
Author(s):  
Kyu Han Kim ◽  
Joni Cahyono

The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. In the present study, the numerical solution of the discredited three-dimensional, incompressible Navier-Stokes equations over an unstructured grid is accomplished with an ANSYS program. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The results trends are similar between the highest pressure distributions at the impeller also produced highest power outputs on 6 numbers of blades at impeller. The model has been validated, comparing numerical results with available experimental data.


1995 ◽  
Vol 117 (2) ◽  
pp. 224-232 ◽  
Author(s):  
M. J. Braun ◽  
M. Dzodzo

The paper treats on a comparative basis the development of the flow and pressure maps in deep, and respectively, shallow hydrostatic bearing pockets. The numerical simulation uses a dimensionless formulation of the Navier-Stokes equations written for a body fitted coordinates system, and applied through a collocated grid. The present work is a continuation of the simulations performed by Braun et al. (1993, 1994a, 1994b) to cases where the length and diameter of the restrictor feedline is of consequence to the flow in both the shallow and the deep pocket. The model includes the coupling between the pocket flow and a finite length feedline flow, on one hand, and the pocket and the adjacent lands on the other hand. Geometrically, all pockets have the same projected footprint, lands length, and capillary feedline. This numerical study uses the Reynolds number Re based on the runner velocity (laminar range only), and the inlet jet strength F as the dynamic similarity parameters, while the dimensionless clearance C is used as a geometric parameter. The flow structures, and the physical reasons underlying the causes of the pressure variation inside the deep and shallow pockets [either longitudinally (radially) or transversally (circum-ferentially)], are discussed quantitatively and comparatively. It is further shown that the transversal pressure distributions under the runner are highly dependent on whether the flow is dominated by the rotation of the runner (hydrodynamic effects), or by the strength of the hydrostatic jet (F). Finally the longitudinal pressure curves in the depth of the pocket, and restrictor are presented and the nature of their variation discussed. The back step and Rayleigh step effects are also discussed on a comparative basis for the two types of pockets, and in conjunction with the Couette, and the jet dominated flow. The modification of the central vortical zones of the deep pockets into oblong vortical zones for the shallow pockets is presented, and its consequences are discussed.


2000 ◽  
Author(s):  
M. Tadjfar ◽  
T. Yamaguchi ◽  
R. Himeno

Abstract In order to simulate blood flow in human vascular system, the unsteady, three-dimensional, incompressible Navier-Stokes equations are solved numerically. The solver is capable of dealing with moving boundaries and moving grids. A second-order in time and third-order upwind finite volume method for solving time-accurate incompressible flows utilizing pseudo-compressibility technique is used. For parallel execution, the flow domain is partitioned. Communication between the subdomains of the flow on Riken’s VPP/700E supercomputer is implemented using MPI message-passing library. The code is capable of running on both shared and/or distributed memory architectures.


2013 ◽  
Vol 62 (3) ◽  
Author(s):  
Tan Yan Bin ◽  
Norzieha Mustapha

A numerical study on the influences of gravitational force on an unsteady two–dimensional nonlinear model of blood flow through a stenosed artery is presented. Blood flow through the constricted region with an irregular stenosis is considered as incompressible Newtonian fluid. The governing equations are derived from the Navier–Stokes equations, which also comprise a significant term for gravitational force in the axial momentum equation. The numerical method chosen in this study is the finite difference approximations based on Marker and Cell (MAC) method at which governing equations are develop in staggered grids for discretization. The Poisson equation of pressure is solved by successive–over–relaxation (S.O.R.) method. Pressure–velocity corrector is imposed to increase accuracy. Streamlines, wall shear stress and axial velocity profiles are plotted.


Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 841
Author(s):  
Yuzhen Jin ◽  
Huang Zhou ◽  
Linhang Zhu ◽  
Zeqing Li

A three-dimensional numerical study of a single droplet splashing vertically on a liquid film is presented. The numerical method is based on the finite volume method (FVM) of Navier–Stokes equations coupled with the volume of fluid (VOF) method, and the adaptive local mesh refinement technology is adopted. It enables the liquid–gas interface to be tracked more accurately, and to be less computationally expensive. The relationship between the diameter of the free rim, the height of the crown with different numbers of collision Weber, and the thickness of the liquid film is explored. The results indicate that the crown height increases as the Weber number increases, and the diameter of the crown rim is inversely proportional to the collision Weber number. It can also be concluded that the dimensionless height of the crown decreases with the increase in the thickness of the dimensionless liquid film, which has little effect on the diameter of the crown rim during its growth.


1989 ◽  
Vol 209 ◽  
pp. 285-308 ◽  
Author(s):  
R. J. Bodonyi ◽  
W. J. C. Welch ◽  
P. W. Duck ◽  
M. Tadjfar

A numerical study of the generation of Tollmien-Schlichting (T–S) waves due to the interaction between a small free-stream disturbance and a small localized variation of the surface geometry has been carried out using both finite–difference and spectral methods. The nonlinear steady flow is of the viscous–inviscid interactive type while the unsteady disturbed flow is assumed to be governed by the Navier–Stokes equations linearized about this flow. Numerical solutions illustrate the growth or decay of the T–S waves generated by the interaction between the free-stream disturbance and the surface distortion, depending on the value of the scaled Strouhal number. An important result of this receptivity problem is the numerical determination of the amplitude of the T–S waves.


1996 ◽  
Vol 118 (2) ◽  
pp. 335-340 ◽  
Author(s):  
Mohamed Selmi

This paper is concerned with the solution of the 3-D-Navier-Stokes equations describing the steady motion of a viscous fluid inside a partially filled spinning and coning cylinder. The cylinder contains either a single fluid of volume less than that of the cylinder or a central rod and a single fluid of combined volume (volume of the rod plus volume of the fluid) equal to that of the cylinder. The cylinder rotates about its axis at the spin rate ω and rotates about an axis that passes through its center of mass at the coning rate Ω. In practical applications, as in the analysis and design of liquid-filled projectiles, the parameter ε = τ sin θ, where τ = Ω/ω and θ is the angle between spin axis and coning axis, is small. As a result, linearization of the Navier-Stokes equations with this parameter is possible. Here, the full and linearized Navier-Stokes equations are solved by a spectral collocation method to investigate the nonlinear effects on the moments caused by the motion of the fluid inside the cylinder. In this regard, it has been found that nonlinear effects are negligible for τ ≈ 0.1, which is of practical interest to the design of liquid-filled projectiles, and the solution of the linearized Navier-Stokes equations is adequate for such a case. However, as τ increases, nonlinear effects increase, and become significant as ε surpasses about 0.1. In such a case, the nonlinear problem must be solved. Complete details on how to solve such a problem is presented.


Author(s):  
David Gross ◽  
Yann Roux ◽  
Benjamin Rousse ◽  
François Pétrié ◽  
Ludovic Assier ◽  
...  

The problem of Vortex-Induced Vibrations (VIV) on spool and jumper geometries is known to present several drawbacks when approached with conventional engineering tools used in the study of VIV on risers. Current recommended practices can lead to over-conservatism that the industry needs to quantify and minimize within notably cost reduction objectives. Within this purpose, the paper will present a brief critical review of the Industry standards and more particularly focus on both experimental and Computational Fluid Dynamic (CFD) approaches. Both qualitative and quantitative comparisons between basin tests and CFD results for a 2D ‘M-shape’ spool model will be detailed. The results presented here are part of a larger experimental and numerical campaign which considered a number of current velocities, heading and geometry configurations. The vibratory response of the model will be investigated for one of the current velocities and compared with the results obtained through recommended practices (e.g. Shear7 and DNV guidelines). The strategy used by the software K-FSI to solve the fluid-structure interaction (FSI) problem is a partitioned coupling solver between fluid solver (FINE™/Marine) and structural solvers (ARA). FINE™/Marine solves the Reynolds-Averaged Navier-Stokes Equations in a conservative way via the finite volume method and can work on structured or unstructured meshes with arbitrary polyhedrons, while ARA is a nonlinear finite element solver with a large displacement formulation. The experiments were conducted in the BGO FIRST facility located in La Seyne sur Mer, France. Particular attention was paid towards the model design, fabrication, instrumentation and characterization, to ensure an excellent agreement between the structural numerical model and the actual physical model. This included the use of a material with low structural damping, the performance of stiffness and decay tests in air and in still water, plus the rationalization of the instrumentation to be able to capture the response with the minimum flow perturbation or interaction due to instrumentation.


1998 ◽  
Vol 14 (1) ◽  
pp. 23-29
Author(s):  
Robert R. Hwang ◽  
Sheng-Yuh Jaw

ABSTRACTThis paper presents a numerical study on turbulent vortex shedding flows past a square cylinder. The 2D unsteady periodic shedding motion was resolved in the calculation and the superimposed turbulent fluctuations were simulated with a second-order Reynolds-stress closure model. The calculations were carried out by solving numerically the fully elliptic ensemble-averaged Navier-Stokes equations coupled with the turbulence model equations together with the two-layer approach in the treatment of the near-wall region. The performance of the computations was evaluated by comparing the numerical results with data from available experiments. Results indicate that the present study gives good agreement in the shedding frequency and mean drag as well as in some phase profiles of the mean velocity.


Sign in / Sign up

Export Citation Format

Share Document