scholarly journals Ultra-Low Interfacial Tension Foam System for Enhanced Oil Recovery

2019 ◽  
Vol 9 (10) ◽  
pp. 2155 ◽  
Author(s):  
Qi Liu ◽  
Shuangxing Liu ◽  
Dan Luo ◽  
Bo Peng

The liquid phase of foam systems plays a major role in improving the fluidity of oil, by reducing oil viscosity and stripping oil from rock surfaces during foam-flooding processes. Improving the oil displacement capacity of the foam’s liquid phase could lead to significant improvement in foam-flooding effects. Oil-liquid interfacial tension (IFT) is an important indicator of the oil displacement capacity of a liquid. In this study, several surfactants were used as foaming agents, and polymers were used as foam stabilizers. Foaming was induced using a Waring blender stirring method. Foam with an oil-liquid IFT of less than 10–3 mN/m was prepared after a series of adjustments to the liquid composition. This study verified the possibility of a foam system with both an ultra-low oil-liquid IFT and high foaming properties. Our results provide insight into a means of optimizing foam fluids for enhanced oil recovery.

Author(s):  
Ahmed Ragab ◽  
Eman M. Mansour

The enhanced oil recovery phase of oil reservoirs production usually comes after the water/gas injection (secondary recovery) phase. The main objective of EOR application is to mobilize the remaining oil through enhancing the oil displacement and volumetric sweep efficiency. The oil displacement efficiency enhances by reducing the oil viscosity and/or by reducing the interfacial tension, while the volumetric sweep efficiency improves by developing a favorable mobility ratio between the displacing fluid and the remaining oil. It is important to identify remaining oil and the production mechanisms that are necessary to improve oil recovery prior to implementing an EOR phase. Chemical enhanced oil recovery is one of the major EOR methods that reduces the residual oil saturation by lowering water-oil interfacial tension (surfactant/alkaline) and increases the volumetric sweep efficiency by reducing the water-oil mobility ratio (polymer). In this chapter, the basic mechanisms of different chemical methods have been discussed including the interactions of different chemicals with the reservoir rocks and fluids. In addition, an up-to-date status of chemical flooding at the laboratory scale, pilot projects and field applications have been reported.


2018 ◽  
Vol 55 (3) ◽  
pp. 252-257 ◽  
Author(s):  
Derong Xu ◽  
Wanli Kang ◽  
Liming Zhang ◽  
Jiatong Jiang ◽  
Zhe Li ◽  
...  

RSC Advances ◽  
2017 ◽  
Vol 7 (14) ◽  
pp. 8118-8130 ◽  
Author(s):  
Hongbin Yang ◽  
Wanli Kang ◽  
Hairong Wu ◽  
Yang Yu ◽  
Zhou Zhu ◽  
...  

The dispersed low-elastic microsphere system shows shear-thickening behavior because of the microstructure change and the interaction of internal forces.


The Analyst ◽  
2021 ◽  
Author(s):  
Khashayar R. Bajgiran ◽  
Hannah C. Hymel ◽  
Shayan Sombolestani ◽  
Nathalie Dante ◽  
Nora Safa ◽  
...  

The developed platform offers a simple fluorescent visualization technique to specifically identify the oil and water phases without altering their surface properties which improves on the achievable resolution in EOR applications.


2016 ◽  
Vol 4 (2) ◽  
pp. 69 ◽  
Author(s):  
Cristiano José de Andrade ◽  
Gláucia Maria Pastore

Worldwide oil production has been declining. Microbial enhanced oil recovery is one of the most important tertiary recovery processes. The aim of this work was to evaluate the surface activity properties of surfactin and mannosylerithritol lipids-B. In our previous studies, surfactin and mannosylerithritol lipids were produced using cassava wastewater as substrate and then purified by ultrafiltration. Thus, this work extends our previous studies. Experiments of surface activity under extreme conditions (temperature, ionic strength and pH), oil displacement, removal of oil from sand and emulsification index were carried out. Central composite rotational design was performed under extreme conditions of temperature, pH and ionic strength. The results indicated that ionic strength significantly affected the surface activity of surfactin. On the other hand, ionic strength, but also temperature and pH significantly affected the tenso activity of mannosylerithritol lipids-B. Regarding oil displacement test, mannosylerithritol lipids-B showed higher clear zone than surfactin. Contrary, in the experiments of removal of crude oil from sand, minimal differences were observed between surfactin and mannosylerithritol lipids-B. Therefore, both surfactin and mannosylerithritol lipids-B showed good surface activity under extreme conditions. In addition, it seems that mannosylerithritol lipids-B is subtly better than surfactin for microbial enhanced oil recovery.


2021 ◽  
Author(s):  
Rini Setiati ◽  
Muhammad Taufiq Fathaddin ◽  
Aqlyna Fatahanissa

Microemulsion is the main parameter that determines the performance of a surfactant injection system. According to Myers, there are four main mechanisms in the enhanced oil recovery (EOR) surfactant injection process, namely interface tension between oil and surfactant, emulsification, decreased interfacial tension and wettability. In the EOR process, the three-phase regions can be classified as type I, upper-phase emulsion, type II, lower-phase emulsion and type III, middle-phase microemulsion. In the middle-phase emulsion, some of the surfactant grains blend with part of the oil phase so that the interfacial tension in the area is reduced. The decrease in interface tension results in the oil being more mobile to produce. Thus, microemulsion is an important parameter in the enhanced oil recovery process.


2018 ◽  
Author(s):  
Ruth Hahn ◽  
Kerry Spilker ◽  
Dennis Alexis ◽  
Harry Linnemeyer ◽  
Taimur Malik ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document