scholarly journals A Review of Low-Frequency Active Vibration Control of Seat suspension Systems

2019 ◽  
Vol 9 (16) ◽  
pp. 3326 ◽  
Author(s):  
Zhao ◽  
Wang

As a major device for reducing vibration and protecting passengers, the low-frequency vibration control performance of commercial vehicle seating systems has become an attractive research topic in recent years. This article reviews the recent developments in active seat suspensions for vehicles. The features of active seat suspension actuators and the related control algorithms are described and discussed in detail. In addition, the vibration control and reduction performance of active seat suspension systems are also reviewed. The article also discusses the prospects of the application of machine learning, including artificial neural network (ANN) control algorithms, in the development of active seat suspension systems for vibration control.

Author(s):  
Young-Tai Choi ◽  
Norman M. Wereley ◽  
Gregory J. Hiemenz

Novel semi-active vibration controllers are developed in this study for magnetorheological (MR) fluid-based vibration control systems, including: (1) a band-pass frequency shaped semi-active control algorithm, (2) a narrow-band frequency shaped semi-active control algorithm. These semi-active vibration control algorithms designed without resorting to the implementation of an active vibration control algorithms upon which is superposed the energy dissipation constraint. These new Frequency Shaped Semi-active Control (FSSC) algorithms require neither an accurate damper (or actuator) model, nor system identification of damper model parameters for determining control current input. In the design procedure for the FSSC algorithms, the semi-active MR damper is not treated as an active force producing actuator, but rather is treated in the design process as a semi-active dissipative device. The control signal from the FSSC algorithms is a control current, and not a control force as is typically done for active controllers. In this study, two FSSC algorithms are formulated and performance of each is assessed via simulation. Performance of the FSSC vibration controllers is evaluated using a single-degree-of-freedom (DOF) MR fluid-based engine mount system. To better understand the control characteristics and advantages of the two FSSC algorithms, the vibration mitigation performance of a semi-active skyhook control algorithm, which is the classical semi-active controller used in base excitation problems, is compared to the two FSSC algorithms.


2018 ◽  
Vol 67 (2) ◽  
pp. 020702
Author(s):  
Luo Dong-Yun ◽  
Cheng Bing ◽  
Zhou Yin ◽  
Wu Bin ◽  
Wang Xiao-Long ◽  
...  

Author(s):  
Kazuto Seto ◽  
Yoshihiro Toba ◽  
Fumio Doi

Abstract In order to realize living comfort of tall buildings by reducing the vibration of higher floors by strong winds, this paper proposes a new method of vibration control for flexible structures with a large scale. The higher a tall building the lower its natural frequency. Since obtaining sufficient force to control the lower frequency vibrations of tall buildings is a difficult task, controlling the vibration of ultra-tall buildings using active dynamic absorbers is nearly impossible. This problem can be overcome by placing actuators between a pair of two or three ultra-tall buildings and using the vibrational force of each building to offset the vibrational movement of its paired mate. Therefore, it is able to obtain enough control force under the low frequency when the proposed method is used. In this paper, a reduced-order model expressed by 2DOF system under taking into consideration for preventing spillover instability is applied to control each flexible structure. The LQ control theory is applied to the design of such a control system. The effectiveness of this method is demonstrated theoretically as well as experimentally.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yi Yu ◽  
Xing Shen ◽  
Yun Huang

In wind tunnel tests, the cantilever sting is usually used to support aircraft models because of its simple structure and low aerodynamic interference. However, in some special conditions, big-amplitude and low-frequency vibration would occur easily on the model not only in the pitch direction but also in the yaw direction, resulting in inaccurate data and even damage of the supporting structure. In this paper, aiming at suppressing the vibration in pitch and yaw plane, a multidimensional system identification and active vibration control system on the basis of piezoelectric actuators is established. A vibration monitoring method based on the strain-displacement transformation (SDT) matrix is proposed, which can transform strain signals into vibration displacements. The system identification based on chirp-Z transform (CZT) is applied to improve the adaptability and precision of the building process for the system model. After that, the hardware platform as well as the software control system based on the classical proportional-derivative (PD) algorithm is built. A series of experiments are carried out, and the results show the exactness of the vibration monitoring method. The system identification process is completed, and the controller is designed. Vibration control experiments verify the effectiveness of the controller, and the results indicate that vibrations in pitch and yaw directions are attenuated apparently. The spectrum power is reduced over 14.8 dB/Hz, which prove that the multidimensional identification and active vibration control system has the capability to decline vibration from different directions.


2018 ◽  
Vol 2018 ◽  
pp. 1-16
Author(s):  
Wenhao Sun ◽  
Feng Zhang ◽  
Weidong Zhu ◽  
Han Wang ◽  
Shunan Luo ◽  
...  

A modal analysis (MA) was preconsidered to determine a novel active vibration control (AVC) structure of multistage gear transmission system (MGTS) and an appropriate actuating position for the piezoelectric actuator (PZT); the results of the calculating method and the finite element method (FEM) were compared to validate the reliability of MA. The controllers based on different control algorithms were designed to drive the PZTs to output the control force for suppressing the host structure vibrations. To analyze the feasibility of the applied control schemes and discuss the control effects dominated by the different control algorithms, a series of active vibration control numerical simulations were studied. The cosimulation results validate the practicability of the proposed control schemes and provide a forcible guidance for the further experimental works.


Author(s):  
Junyoung Park ◽  
Alan Palazzolo ◽  
Raymond Beach

Theory and simulation results have demonstrated that four, variable speed flywheels could potentially provide the energy storage and attitude control functions of existing batteries and control moment gyros on a satellite. Past modeling and control algorithms were based on the assumption of rigidity in the flywheel’s bearings and the satellite structure. This paper provides simulation results and theory, which eliminates this assumption utilizing control algorithms for active vibration control (AVC), flywheel shaft levitation, and integrated power transfer and attitude control (IPAC), that are effective even with low stiffness active magnetic bearings (AMBs) and flexible satellite appendages. The flywheel AVC and levitation tasks are provided by a multiple input–multiple output control law that enhances stability by reducing the dependence of the forward and backward gyroscopic poles with changes in flywheel speed. The control law is shown to be effective even for (1) large polar to transverse inertia ratios, which increases the stored energy density while causing the poles to become more speed dependent, and for (2) low bandwidth controllers shaped to suppress high frequency noise. Passive vibration dampers are designed to reduce the vibrations of flexible appendages of the satellite. Notch, low-pass, and bandpass filters are implemented in the AMB system to reduce and cancel high frequency, dynamic bearing forces and motor torques due to flywheel mass imbalance. Successful IPAC simulation results are presented with a 12% initial attitude error, large polar to transverse inertia ratio (IP∕IT), structural flexibility, and unbalance mass disturbance.


2019 ◽  
Vol 9 (15) ◽  
pp. 3188 ◽  
Author(s):  
Xiyue Ma ◽  
Lei Wang ◽  
Jian Xu

Active control of low frequency vibration and sound radiation from a rib stiffened plate has great practical significance as this structure is widely applied in engineering, such as aircraft or ship fuselage shells. This paper presents an investigation on the performance of active vibration control of the rib stiffened plate by using decentralized velocity feedback controllers with inertial actuators. A simple modeling approach in frequency domain is proposed in this research to calculate the control performance. The theoretical model of vibrating response of the ribbed plate and the velocity feedback controllers is first established. Then, as an important part, the influences of the control gain and the number of the decentralized unit on the control performance are investigated. Results obtained demonstrate that—similar to that of the unribbed plate case—appropriately choosing the number of the unit and their feedback gains can achieve good control results. Too many units or very high feedback gains will not bring further noise reduction.


Sign in / Sign up

Export Citation Format

Share Document