scholarly journals Identification of Fusarium Head Blight in Winter Wheat Ears Based on Fisher’s Linear Discriminant Analysis and a Support Vector Machine

2019 ◽  
Vol 9 (18) ◽  
pp. 3894 ◽  
Author(s):  
Linsheng Huang ◽  
Zhaochuan Wu ◽  
Wenjiang Huang ◽  
Huiqin Ma ◽  
Jinling Zhao

Fusarium head blight (FHB) is one of the diseases caused by fungal infection of winter wheat (Triticum aestivum), which is an important cause of wheat yield loss. It produces the deoxynivalenol (DON) toxin, which is harmful to human and animal health. In this paper, a total of 89 samples were collected from FHB endemic areas. The occurrence of FHB is completely natural in experimental fields. Non-imaging hyperspectral data were first processed by spectral standardization. Spectral features of the first-order derivatives, the spectral absorption features of the continuum removal, and vegetation indices were used to evaluate the ability to identify FHB. Then, the spectral feature sets, which were sensitive to FHB and have significant differences between classes, were extracted from the front, side, and erect angles of winter wheat ear, respectively. Finally, Fisher’s linear discriminant analysis (FLDA) for dimensionality reduction and a support vector machine (SVM) based on radical basis function (RBF) were used to construct an effective identification model for disease severity at front, side, and erect angles. Among selected features, the first-order derivative features of SDg/SDb and (SDg-SDb)/(SDg+SDb) were most dominant in the model produced for the three angles. The results show that: (1) the selected spectral features have great potential in detecting ears infected with FHB; (2) the accuracy of the FLDA model for the side, front, and erect angles was 77.1%, 85.7%, and 62.9%. The overall accuracy of the SVM (80.0%, 82.9%, 65.7%) was slightly better than FLDA, but the effect was not obvious; (3) LDA combined with SVM can effectively improve the overall accuracy, user’s accuracy, and producer’s accuracy of the model for the three angles. The over accuracy of the side (88.6%) was better than the front (85.7%), while the over accuracy of the erect angle was the lowest (68.6%).

Author(s):  
Lutfi Hakim ◽  
Sepyan Purnama Kristanto ◽  
Alfi Zuhriya Khoirunnisaa ◽  
Adhi Dharma Wibawa

Emotion recognition using physiological signals has been a special topic frequently discussed by researchers and practitioners in the past decade. However, the use of SpO2 and Pulse rate signals for emotion recognitionisvery limited and the results still showed low accuracy. It is due to the low complexity of SpO2 and Pulse rate signals characteristics. Therefore, this study proposes a Multiscale Entropy and Multiclass Fisher’s Linear Discriminant Analysis for feature extraction and dimensional reduction of these physiological signals for improving emotion recognition accuracy in elders.  In this study, the dimensional reduction process was grouped into three experimental schemes, namely a dimensional reduction using only SpO2 signals, pulse rate signals, and multimodal signals (a combination feature vectors of SpO2 and Pulse rate signals). The three schemes were then classified into three emotion classes (happy, sad, and angry emotions) using Support Vector Machine and Linear Discriminant Analysis Methods. The results showed that Support Vector Machine with the third scheme achieved optimal performance with an accuracy score of 95.24%. This result showed a significant increase of more than 22%from the previous works.


2020 ◽  
Vol 27 (4) ◽  
pp. 329-336 ◽  
Author(s):  
Lei Xu ◽  
Guangmin Liang ◽  
Baowen Chen ◽  
Xu Tan ◽  
Huaikun Xiang ◽  
...  

Background: Cell lytic enzyme is a kind of highly evolved protein, which can destroy the cell structure and kill the bacteria. Compared with antibiotics, cell lytic enzyme will not cause serious problem of drug resistance of pathogenic bacteria. Thus, the study of cell wall lytic enzymes aims at finding an efficient way for curing bacteria infectious. Compared with using antibiotics, the problem of drug resistance becomes more serious. Therefore, it is a good choice for curing bacterial infections by using cell lytic enzymes. Cell lytic enzyme includes endolysin and autolysin and the difference between them is the purpose of the break of cell wall. The identification of the type of cell lytic enzymes is meaningful for the study of cell wall enzymes. Objective: In this article, our motivation is to predict the type of cell lytic enzyme. Cell lytic enzyme is helpful for killing bacteria, so it is meaningful for study the type of cell lytic enzyme. However, it is time consuming to detect the type of cell lytic enzyme by experimental methods. Thus, an efficient computational method for the type of cell lytic enzyme prediction is proposed in our work. Method: We propose a computational method for the prediction of endolysin and autolysin. First, a data set containing 27 endolysins and 41 autolysins is built. Then the protein is represented by tripeptides composition. The features are selected with larger confidence degree. At last, the classifier is trained by the labeled vectors based on support vector machine. The learned classifier is used to predict the type of cell lytic enzyme. Results: Following the proposed method, the experimental results show that the overall accuracy can attain 97.06%, when 44 features are selected. Compared with Ding's method, our method improves the overall accuracy by nearly 4.5% ((97.06-92.9)/92.9%). The performance of our proposed method is stable, when the selected feature number is from 40 to 70. The overall accuracy of tripeptides optimal feature set is 94.12%, and the overall accuracy of Chou's amphiphilic PseAAC method is 76.2%. The experimental results also demonstrate that the overall accuracy is improved by nearly 18% when using the tripeptides optimal feature set. Conclusion: The paper proposed an efficient method for identifying endolysin and autolysin. In this paper, support vector machine is used to predict the type of cell lytic enzyme. The experimental results show that the overall accuracy of the proposed method is 94.12%, which is better than some existing methods. In conclusion, the selected 44 features can improve the overall accuracy for identification of the type of cell lytic enzyme. Support vector machine performs better than other classifiers when using the selected feature set on the benchmark data set.


2021 ◽  
Vol 13 (15) ◽  
pp. 3024
Author(s):  
Huiqin Ma ◽  
Wenjiang Huang ◽  
Yingying Dong ◽  
Linyi Liu ◽  
Anting Guo

Fusarium head blight (FHB) is a major winter wheat disease in China. The accurate and timely detection of wheat FHB is vital to scientific field management. By combining three types of spectral features, namely, spectral bands (SBs), vegetation indices (VIs), and wavelet features (WFs), in this study, we explore the potential of using hyperspectral imagery obtained from an unmanned aerial vehicle (UAV), to detect wheat FHB. First, during the wheat filling period, two UAV-based hyperspectral images were acquired. SBs, VIs, and WFs that were sensitive to wheat FHB were extracted and optimized from the two images. Subsequently, a field-scale wheat FHB detection model was formulated, based on the optimal spectral feature combination of SBs, VIs, and WFs (SBs + VIs + WFs), using a support vector machine. Two commonly used data normalization algorithms were utilized before the construction of the model. The single WFs, and the spectral feature combination of optimal SBs and VIs (SBs + VIs), were respectively used to formulate models for comparison and testing. The results showed that the detection model based on the normalized SBs + VIs + WFs, using min–max normalization algorithm, achieved the highest R2 of 0.88 and the lowest RMSE of 2.68% among the three models. Our results suggest that UAV-based hyperspectral imaging technology is promising for the field-scale detection of wheat FHB. Combining traditional SBs and VIs with WFs can improve the detection accuracy of wheat FHB effectively.


2019 ◽  
Vol 6 (5) ◽  
pp. 190001 ◽  
Author(s):  
Katherine E. Klug ◽  
Christian M. Jennings ◽  
Nicholas Lytal ◽  
Lingling An ◽  
Jeong-Yeol Yoon

A straightforward method for classifying heavy metal ions in water is proposed using statistical classification and clustering techniques from non-specific microparticle scattering data. A set of carboxylated polystyrene microparticles of sizes 0.91, 0.75 and 0.40 µm was mixed with the solutions of nine heavy metal ions and two control cations, and scattering measurements were collected at two angles optimized for scattering from non-aggregated and aggregated particles. Classification of these observations was conducted and compared among several machine learning techniques, including linear discriminant analysis, support vector machine analysis, K-means clustering and K-medians clustering. This study found the highest classification accuracy using the linear discriminant and support vector machine analysis, each reporting high classification rates for heavy metal ions with respect to the model. This may be attributed to moderate correlation between detection angle and particle size. These classification models provide reasonable discrimination between most ion species, with the highest distinction seen for Pb(II), Cd(II), Ni(II) and Co(II), followed by Fe(II) and Fe(III), potentially due to its known sorption with carboxyl groups. The support vector machine analysis was also applied to three different mixture solutions representing leaching from pipes and mine tailings, and showed good correlation with single-species data, specifically with Pb(II) and Ni(II). With more expansive training data and further processing, this method shows promise for low-cost and portable heavy metal identification and sensing.


2011 ◽  
Vol 130-134 ◽  
pp. 2047-2050 ◽  
Author(s):  
Hong Chun Qu ◽  
Xie Bin Ding

SVM(Support Vector Machine) is a new artificial intelligence methodolgy, basing on structural risk mininization principle, which has better generalization than the traditional machine learning and SVM shows powerfulability in learning with limited samples. To solve the problem of lack of engine fault samples, FLS-SVM theory, an improved SVM, which is a method is applied. 10 common engine faults are trained and recognized in the paper.The simulated datas are generated from PW4000-94 engine influence coefficient matrix at cruise, and the results show that the diagnostic accuracy of FLS-SVM is better than LS-SVM.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Bin Zhang ◽  
Jinke Gong ◽  
Wenhua Yuan ◽  
Jun Fu ◽  
Yi Huang

In order to effectively predict the sieving efficiency of a vibrating screen, experiments to investigate the sieving efficiency were carried out. Relation between sieving efficiency and other working parameters in a vibrating screen such as mesh aperture size, screen length, inclination angle, vibration amplitude, and vibration frequency was analyzed. Based on the experiments, least square support vector machine (LS-SVM) was established to predict the sieving efficiency, and adaptive genetic algorithm and cross-validation algorithm were used to optimize the parameters in LS-SVM. By the examination of testing points, the prediction performance of least square support vector machine is better than that of the existing formula and neural network, and its average relative error is only 4.2%.


Sign in / Sign up

Export Citation Format

Share Document