scholarly journals Performance Enhancement and Capacity Enlargement for a DWDM-PON System Utilizing an Optimized Cross Seeding Rayleigh Backscattering Design

2019 ◽  
Vol 9 (21) ◽  
pp. 4520 ◽  
Author(s):  
Mohammed ◽  
Hamdi Mansi

In this work, a record of 16 channels, with future channel spacing in the telecommunication standardization sector of the International Telecommunications Union G.694.1 (ITU-T G.694.1) for Dense Wavelength Division Multiplexing (DWDM) (i.e., 12.5 GHz), is simulated and tested. This work is done to realize a proposed high capacity DWDM-Passive Optical Network (DWDM-PON) system. These specifications are associated with enhancing the upstream (US) capacity to 2.5 Gb/s over a 25 km Single-Mode Fiber (SMF) transmission and producing a noteworthy average Bit Error Rate (BER) of 10−12 during the system’s evaluation process. These performance indicators are achieved through design optimization of the cross-seeding Rayleigh Backscattering (RB) elimination technique. This optimization has successfully reduced (compared to the cross-seeding related literature) the simulated DWDM-PON components and maintained an effective Rayleigh Backscattering elimination with the aforementioned system’s performance enhancement and capacity enlargement.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Shahab Ahmad Niazi ◽  
Xiaoguang Zhang ◽  
Lixia Xi ◽  
Abid Munir ◽  
Muhammad Idrees ◽  
...  

International Telecommunication Union (ITU) has recently standardized ultrahigh definition television (UHD-TV) with a resolution 16 times more than the current high definition TV. An increase in the efficiency of video source coding or in the capacity of transmission channels will be needed to deliver such programs by passive optical network (PON). In this paper, a high capacity integrated PON infrastructure is proposed to overlay ultrahigh definition television by a complete passive coexistence of 10G-PON (XG-PON) and single carrier directly modulated, duo-binary 40G-PON (XLG-PON) signal. The simulation results show error-free transmission performance and further distribution to 32 optical network units (ONUs) on broadcast basis with negligible power penalty over 20 km of bidirectional standard single mode fiber.


Photonics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 49
Author(s):  
Lorenzo Combi ◽  
Alberto Gatto ◽  
Pierpaolo Boffi ◽  
Umberto Spagnolini ◽  
Paola Parolari

The evolution of radio access networks is towards a centralized architecture (C-RAN), with massive antenna deployments and large radio-frequency bandwidths. In the next future, traditional optical transport technologies based on digital radio over fiber will no longer be able to support the mobile fronthaul traffic connecting antennas hosted at remote radio units and centralized baseband units. Analog radio over fiber can be selected to support the mobile fronthaul (MFH) network and, in particular, pulse width modulation (PWM) is a viable alternative for analog signal transport. In order to increase the MFH spectral efficiency, we propose to exploit multilevel PWM (M-PWM) in a wavelength division multiplexing-passive optical network (WDM-PON) network, comparing its performance with a conventional 2-level PWM solution. Experimental results show successful transmission over 7.5-km standard single mode fiber (SSMF) of up to 16 aggregated LTE-like 20-MHz signals with 64-QAM on each subcarrier, while up to eight aggregated LTE-like 20-MHz signals with 256-QAM could be supported. M-PWM thus allows either using higher order modulation formats or aggregating a higher number of LTE channels.


2015 ◽  
Vol 15 (10) ◽  
pp. 7462-7466
Author(s):  
Su Hwan Oh ◽  
Ki-Hong Yoon ◽  
Seung-Hyun Cho ◽  
Jun-Kyu Seo

We report the transmission capability of a tunable external cavity laser (T-ECL) that utilizes a super-luminescent diode (SLD) and a polymer Bragg reflector (PBR) operating with a direct modulation of 2.5 Gb/s for a light source of a long-reach wavelength division multiplexed-passive optical network (WDM-PON). The T-ECL successfully operated at an ambient temperature of −20 °C to 70 °C when employing a cooled SLD. A tuning range of 12-nm is achieved with a tuning power of lower than 80 mW. A side mode suppression ratio of more than 35 dB was obtained for the whole tuning range. The linewidth of the lasing spectrum is less than 0.1 nm at 20 dB from the peak power. The transmission performance of the T-ECL, including an optical bandpass filter (OBPF), is better than that of the T-ECL excluding an OBPF for a long-reach transmission over 80 km of single mode fiber (SMF). The power penalty of the T-ECL is less than 1.4 dB when using an OBPF for an 80-km transmission.


2016 ◽  
Vol 37 (3) ◽  
Author(s):  
Sooraj Parkash ◽  
Anurag Sharma ◽  
Harsukhpreet Singh

AbstractThis paper successfully demonstrates bidirectional wavelength division multiplexing passive optical network (WDM-PON) system for 32 channels, 0.8 nm (100 GHz) channels spacing with 3.5 GHz filter bandwidth. The system delivers 160 GB/s data rate and 80 GB/s data rate in downstream and upstream, respectively. The optical source for downstream data and upstream data is mode-locked laser at central office and reflective semiconductor optical amplifier (RSOA) at optical network unit. The maximum reach of designed system is 50 km without using any dispersion compensation scheme. This paper comprises comparison of series of modulation format in downstream and upstream such as SOLITON, NRZ, RZ, MANCHESTER, CSRZ and CRZ-DPSK and optimization of the performance of designed system. It has been observed that CRZ-DPSK/NRZ gives best performance in downstream and upstream transmission for designed system. The simulation work report of minimum BER is e


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Cheikh Kherici ◽  
Malika Kandouci

AbstractThe growth of optical technology is currently being studied extensively to meet the significant demand for bandwidth. The passive optical network (PON) solves the problem of bandwidth as it extends the optical network to individuals and businesses [Sifta R, Munster P, Krajsa O, Filka M, “Simulation of bidirectional traffic in WDM-PON networks", Brno University of Technology, ISSN 0033–2097, R. 90 NR 1/2014.]. In this paper, a comparative study is made between the WDM PON system and the CWDM PON system using two different architectures, one for the WDM PON and the other for the CWDM PON, to illustrate the appropriate technique for the PON network by increasing the Q factor and the OSNR ratio while minimizing the bit error rate (BER < 10–9). Both systems are simulated at 10 Gbps for four users of bidirectional SMF (Single Mode Fiber) fiber lengths and different powers. In order to determine the transmission performance for both systems, the link was designed for fiber lengths of 20, 30, 40, 50 and 60 km as well as for powers from −10 dBm up to 10 dBm for four users. The use of the EDFA amplifier in the WDM PON system is required in this document to minimize degradation caused by attenuation [Parkirti RDK, Singh R. Cost-efficient Colorless WDM-PON Based on RSOA for High Capacity. Int J Adv Res Comput Eng Technol (IJARCET). 2016;5]. On the contrary, in the CWDM PON system, the amplification is not essential because the wavelengths used in this system are not affected by the water peak which causes a strong attenuation of the wavelengths in the 1370–1410 nm range on optical fibers [Nazir M, Arshad F, Asif R. Design and evaluation of power budget for a bidirectional CWDM-Passive Optical Network. In: International Conference on Communication, Computing and Digital Systems (C-CODE), Islamabad, Pakistan, 04 May 2017.]. The peak of water vapor absorption is close to 1383 nm.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Navjot Singh ◽  
Bharat Naresh Bansal

Abstract Wavelength division multiplexed passive optical is promising technique to achieve a high data rate and large number of user. The notable advantages of WDM PON is the combination of reliability, cheap in cost, accessible bandwidth, high security, large optical reach and it can support large number of ONU. There are multiple approaches to achieve high-speed WDN PON using different transmission techniques. In WDM, multiple lasers are required which increase the cost of the system. To reduce cost, an optical multicarrier generation system is proposed. An economical multiple carrier generation with the incorporation of sine generator and Mach–Zehndar modulator is demonstrated. Utmost work of sine generator and dual drive modulator was to attain low cost functioning of passive optical networks. Multicarrier generation was done and replacement of laser carriers with optical multicarrier generator. Carriers were generated with the frequency spacing of 20 GHz and these carriers were used in the passive optical networks with the tone-to-noise ratio of 40 dB, amplitude difference of 1.4 dB. For the transmission of downstream in the PON, differential phase shift keying was employed at 10 Gbps data speed. Transmission distance achieved was 30 km using single-mode fiber and this was a part of optical distribution network. Optical network unit was next part after ODN and signals were received with balanced receiver. Moreover, half signal was given to intensity modulator for the signal re-modulation. Bit error rate of 10–9 was achieved at all channels in the downstream. An upstream of 10 Gbps was accomplished in the passive optical network.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Shuai Zhang ◽  
Liqun Huang ◽  
Mingxu Zhu

In order to effectively solve the problem of data transmission security and peak-to-average ratio (PAPR) in an orthogonal frequency division multiplexing passive optical network (OFDM-PON) transmission system, in this paper, a joint encryption scheme of discrete cosine transform (DCT) and selective mapping (SLM) based on chaotic mapping is proposed. In this scheme, the chaotic sequence of a 3D Lorenz chaotic system is used as the row and column index of the DCT matrix and the phase factor of SLM to resist selective plaintext attack, and the system encryption is realized while reducing PAPR. The theoretical analysis and numerical simulation show that the common OFDM-PON, the proposed algorithm, can obtain a PAPR suppression gain of ∼4.8 dB and improve the receiver sensitivity by ∼4 dB BER @ 10 − 3 . In addition, it shows that, with the increase of row/column index mismatch of the DCT matrix, the bit error rate of the system increases gradually. An encrypted data transmission of 8 GB/s 16-QAM optical OFDM signals is successfully simulated over a 20 km standard single-mode fiber, which proves the excellent confidentiality of the proposed secure transmission.


Sign in / Sign up

Export Citation Format

Share Document