scholarly journals X-ray Spectroscopies of High Energy Density Matter Created with X-ray Free Electron Lasers

2019 ◽  
Vol 9 (22) ◽  
pp. 4812 ◽  
Author(s):  
Byoung Ick Cho

The recent progress in the development of X-ray free electron lasers (XFELs) allows for the delivery of over 1011 high-energy photons to solid-density samples in a femtosecond time scale. The corresponding peak brightness of XFEL induces a nonlinear response of matter in a short-wavelength regime. The absorption of an XFEL pulse in a solid also results in the creation of high energy density (HED) matter. The electronic structure and related fundamental properties of such HED matter can be investigated with the control of XFEL and various X-ray spectroscopic techniques. These experimental data provide unique opportunities to benchmark theories and models for extreme conditions and to guide further advances. In this article, the current progress in spectroscopic studies on intense XFEL–matter interactions and HED matter are reviewed, and future research opportunities are discussed.

2017 ◽  
Vol 88 (5) ◽  
pp. 053501 ◽  
Author(s):  
M. A. Beckwith ◽  
S. Jiang ◽  
A. Schropp ◽  
A. Fernandez-Pañella ◽  
H. G. Rinderknecht ◽  
...  

2020 ◽  
Vol 36 ◽  
pp. 100813
Author(s):  
Y. Maeda ◽  
Y. Hironaka ◽  
T. Iwasaki ◽  
K. Kawasaki ◽  
Y. Sakawa ◽  
...  

2015 ◽  
Vol 81 (5) ◽  
Author(s):  
Sam M. Vinko

The high peak brightness of X-ray free-electron lasers (FELs), coupled with X-ray optics enabling the focusing of pulses down to sub-micron spot sizes, provides an attractive route to generating high energy-density systems on femtosecond time scales, via the isochoric heating of solid samples. Once created, the fundamental properties of these plasmas can be studied with unprecedented accuracy and control, providing essential experimental data needed to test and benchmark commonly used theoretical models and assumptions in the study of matter in extreme conditions, as well as to develop new predictive capabilities. Current advances in isochoric heating and spectroscopic plasma studies on X-ray FELs are reviewed and future research directions and opportunities discussed.


2021 ◽  
Vol 28 (3) ◽  
pp. 688-706
Author(s):  
H. P. Liermann ◽  
Z. Konôpková ◽  
K. Appel ◽  
C. Prescher ◽  
A. Schropp ◽  
...  

The high-precision X-ray diffraction setup for work with diamond anvil cells (DACs) in interaction chamber 2 (IC2) of the High Energy Density instrument of the European X-ray Free-Electron Laser is described. This includes beamline optics, sample positioning and detector systems located in the multipurpose vacuum chamber. Concepts for pump–probe X-ray diffraction experiments in the DAC are described and their implementation demonstrated during the First User Community Assisted Commissioning experiment. X-ray heating and diffraction of Bi under pressure, obtained using 20 fs X-ray pulses at 17.8 keV and 2.2 MHz repetition, is illustrated through splitting of diffraction peaks, and interpreted employing finite element modeling of the sample chamber in the DAC.


2021 ◽  
Vol 126 (8) ◽  
Author(s):  
G. Pérez-Callejo ◽  
E. V. Marley ◽  
D. A. Liedahl ◽  
L. C. Jarrott ◽  
G. E. Kemp ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document